
HDL Verifier™ Support Package for Xilinx®

FPGA Boards
User's Guide

R2023a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

HDL Verifier™ Support Package for Xilinx® FPGA Boards User's Guide
© COPYRIGHT 2014–2023 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
October 2014 Online only Revised for Version 14.2.0 (R2014b)
March 2015 Online only Revised for Version 15.1.0 (R2015a)
September 2015 Online only Revised for Version 15.2.0 (R2015b)
March 2016 Online only Revised for Version 16.1.0 (R2016a)
September 2016 Online only Revised for Version 16.2.0 (R2016b)
March 2017 Online only Revised for Version 17.1.0 (R2017a)
September 2017 Online only Revised for Version 17.2.0 (R2017b)
March 2018 Online only Revised for Version 18.1.0 (R2018a)
September 2018 Online only Revised for Version 18.2.0 (R2018b)
March 2019 Online only Revised for Version 19.1.0 (R2019a)
September 2019 Online only Revised for Version 19.2.0 (R2019b)
March 2020 Online only Revised for Version 20.1.0 (R2020a)
September 2020 Online only Revised for Version 20.2.0 (R2020b)
March 2021 Online only Revised for Version 21.1.0 (R2021a)
September 2021 Online only Revised for Version 21.2.0 (R2021b)
March 2022 Online only Revised for Version 22.1.0 (R2022a)
September 2022 Online only Revised for Version 22.2.0 (R2022b)
March 2023 Online only Revised for Version 23.1.0 (R2023a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

HDL Verifier Support for Xilinx FPGA Boards
1

Xilinx FPGA Board Support from HDL Verifier . 1-2
Supported Xilinx FPGA Boards . 1-2

Supported EDA Tools and Hardware . 1-6
Software . 1-6
Board Connections . 1-6

Download HDL Verifier FPGA Board Support Packages 1-9
HDL Verifier Support Package for Xilinx FPGA Boards 1-9
Install with Connection to Internet . 1-9
Install Support Package Offline . 1-10

Customize Xilinx FPGA Board . 1-12

Install Digilent Adept 2 Runtime . 1-14
Download Digilent Adept 2 Runtime Installer . 1-14
Install Digilent Adept 2 Runtime . 1-14

Setup and Configuration
2

Guided Hardware Setup . 2-2
Select Board and Interface . 2-2
Setup Checklist . 2-2
Setup Steps . 2-3
Configure NIC on Host Computer . 2-6
Select a Drive and Load Firmware . 2-7
Install PCI Express Driver . 2-8
Set Jumper Switches . 2-8
Connect Hardware . 2-13
Verify Setup . 2-15
Open Examples . 2-16

Configure Network Interface Card (NIC) on Development Computer . . 2-17
Windows . 2-17
Linux . 2-17

iii

Contents

AXI Manager
3

Set Up AXI Manager . 3-2
Integrate AXI Manager IP in FPGA Design . 3-2
JTAG Considerations . 3-3

Use Simulink to Access FPGA Locations . 3-4

PCI Express AXI Manager . 3-6
PCIe AXI Manager IP . 3-6
PCI Express Core . 3-7

Ethernet AXI Manager . 3-10
Ethernet MAC Hub IP . 3-10
UDP AXI Manager IP . 3-14

Ethernet AXI Manager for Xilinx Zynq SoC Devices 3-16
Step 1. Complete Hardware Checklist . 3-16
Step 2. Configure Host Computer . 3-16
Step 3. Copy Image to SD Card in Host System . 3-18
Step 4. Update SD Card Image in SoC Device (Optional) 3-19
Step 5: Load Bitstream File to SoC Device (Optional) 3-20

JTAG AXI Manager . 3-22
AXI Manager IP . 3-22

AXI Manager Simulation
4

AXI Manager Simulation . 4-2
HDL Wrapper Creation . 4-2
SystemVerilog Test Bench . 4-2
writememory(addr,wdata,burst_type) SystemVerilog Task 4-2
readmemory(addr,length,burst_type) SystemVerilog Task 4-3
Memory Mapping Guidelines . 4-3

AXI Manager Reference
5

FPGA Data Capture
6

Data Capture Workflow . 6-2
Generate and Integrate Data Capture IP Using HDL Workflow Advisor . . . 6-3

iv Contents

Configure and Generate IP Core for an Existing HDL Design 6-3
Integrate IP into FPGA . 6-4
Capture Data . 6-5

Triggers . 6-7
What Is a Trigger Condition? . 6-7
Sequential Trigger . 6-7
Configure a Trigger Condition . 6-8
Trigger Position . 6-9

Design Considerations for Data Capture . 6-11
Signals to Capture . 6-11
Capture Timing . 6-11
JTAG Considerations . 6-11
Ethernet Considerations . 6-12

Capture Conditions . 6-13
What Is Capture Condition? . 6-13
Configure Capture Condition . 6-13
Differences Between Triggers and Capture Conditions 6-14

Data Capture Reference
7

HDL Verifier Support Package for Xilinx FPGA Boards
Examples

8
Capture Temperature Sensor Data from Xilinx FPGA Board Using FPGA

Data Capture . 8-2

Access FPGA Memory Using JTAG-Based AXI Manager 8-15

Perform Large Matrix Multiplication on FPGA External DDR Memory
Using Ethernet-Based AXI Manager . 8-18

Access FPGA Memory Using Ethernet-Based AXI Manager 8-24

Access FPGA External Memory Using AXI Manager over PCI Express . . 8-28

Leverage Built-In Ethernet on Zynq to Perform Memory Access Using AXI
Manager . 8-31

Access DUT Registers on Xilinx Pure FPGA Board Using IP Core
Generation Workflow . 8-37

Verify OFDM Transmit and Receive using FPGA Data Capture 8-48

v

HDL Verifier Support for Xilinx FPGA
Boards

• “Xilinx FPGA Board Support from HDL Verifier” on page 1-2
• “Supported EDA Tools and Hardware” on page 1-6
• “Download HDL Verifier FPGA Board Support Packages” on page 1-9
• “Customize Xilinx FPGA Board” on page 1-12
• “Install Digilent Adept 2 Runtime” on page 1-14

1

Xilinx FPGA Board Support from HDL Verifier
HDL Verifier automates the verification of HDL code on FPGA boards by providing connections
between your FPGA board and your simulations in Simulink® or MATLAB®.

• FPGA-in-the-loop (FIL) enables you to run a Simulink or MATLAB simulation that is synchronized
with an HDL design running on an FPGA board.

• FPGA data capture is a way to observe signals from your design while the design is running on the
FPGA. It captures a window of signal data from the FPGA, based on your configuration and trigger
settings, and returns the data to MATLAB or Simulink.

• AXI manager provides access to live on-board memory locations from Simulink or MATLAB. You
must include the AXI manager IP in your FPGA design.

To use each of these features, you must have a supported FPGA board connected to your MATLAB
host computer using a supported connection type, and a supported synthesis tool.

Supported Xilinx FPGA Boards
This support package enables FIL simulation, FPGA data capture, and AXI manager for the boards in
the table.

FPGA data capture and AXI manager are supported for Xilinx devices using Vivado® projects. Xilinx
ISE projects are not supported.

Note

• AXI manager and FPGA data capture in HDL Workflow Advisor support programmable logic (PL)
Ethernet only. Processing system (PS) Ethernet is not supported.

• FPGA data capture in HDL Workflow Advisor supports GMII and MII interfaces. SGMII interface is
not supported.

Device
Family

Board Ethernet JTAG PCI Express Comments
FIL FPG

A
Dat
a
Capt
ure

AXI
Man
ager

FIL FPG
A
Dat
a
Capt
ure

AXI
Man
ager

FILa FPG
A
Dat
a
Capt
ure

AXI
Man
ager

Xilinx
Artix®-7

Digilent®

Nexys™ 4
Artix-7

x x x x

Digilent Arty
Board

x x x x x x

Xilinx
Kintex®

-7

Kintex-7 KC705 x x x x x x x x

1 HDL Verifier Support for Xilinx FPGA Boards

1-2

Device
Family

Board Ethernet JTAG PCI Express Comments
FIL FPG

A
Dat
a
Capt
ure

AXI
Man
ager

FIL FPG
A
Dat
a
Capt
ure

AXI
Man
ager

FILa FPG
A
Dat
a
Capt
ure

AXI
Man
ager

Xilinx
Kintex
UltraSc
ale™

Kintex
UltraScale
FPGA KCU105
Evaluation Kit

x x x x x x x

Xilinx
Kintex
UltraSc
ale+™

Kintex
UltraScale+
FPGA KCU116
Evaluation Kit

 x x x x x For more
information, see “PCI
Express AXI
Manager” on page 3-
6.

Xilinx
Spartan
®-6

Spartan-6
SP605

x

Spartan-6
SP601

x

XUP Atlys
Spartan-6

x

Xilinx
Spartan
-7

Digilent Arty
S7-25

 x x x

Xilinx
Virtex®

UltraSc
ale

Virtex
UltraScale
FPGA VCU108
Evaluation Kit

x x x x x x x

Xilinx
Virtex
UltraSc
ale+

Virtex
UltraScale+
FPGA VCU118
Evaluation Kit

 x x x x x x x

Xilinx
Virtex-7

Virtex-7 VC707 x x x x x x x x
Virtex-7 VC709 x x x x x

Xilinx
Virtex-6

Virtex-6 ML605 x

Xilinx
Virtex-5

Virtex ML505 x
Virtex ML506 x
Virtex ML507 x
Virtex XUPV5–
LX110T

x

Xilinx
Virtex-4

Virtex ML401 x Note Support for
Virtex-4 device
family will be

Virtex ML402 x

 Xilinx FPGA Board Support from HDL Verifier

1-3

Device
Family

Board Ethernet JTAG PCI Express Comments
FIL FPG

A
Dat
a
Capt
ure

AXI
Man
ager

FIL FPG
A
Dat
a
Capt
ure

AXI
Man
ager

FILa FPG
A
Dat
a
Capt
ure

AXI
Man
ager

Virtex ML403 removed in a future
release.

x

Xilinx
Zynq®

Zynq-7000
ZC702

x x x x x This board supports
PS Ethernet.

Zynq-7000
ZC706

x x x x x This board supports
PS Ethernet.

ZedBoard™ x x x x x Use the USB port
marked "PROG" for
programming.

This board supports
PS Ethernet.

ZYBO™
Zynq-7000
Development
Board

 x x x

PicoZed™ SDR
Development
Kit

 x x x

MiniZed™ x x Supported only for
FPGA data capture
and AXI manager via
FTDI JTAG.

Xilinx
Zynq
UltraSc
ale+

Zynq UltraScale
+ MPSoC
ZCU102
Evaluation Kit

x x x x x This board supports
PS Ethernet.

Zynq UltraScale
+ MPSoC
ZCU104
Evaluation Kit

 x x x

Zynq UltraScale
+ MPSoC
ZCU106
Evaluation Kit

 x x x

Zynq UltraScale
+ RFSoC
ZCU111
Evaluation Kit

x x x x x This board supports
PS Ethernet.

1 HDL Verifier Support for Xilinx FPGA Boards

1-4

Device
Family

Board Ethernet JTAG PCI Express Comments
FIL FPG

A
Dat
a
Capt
ure

AXI
Man
ager

FIL FPG
A
Dat
a
Capt
ure

AXI
Man
ager

FILa FPG
A
Dat
a
Capt
ure

AXI
Man
ager

Zynq UltraScale
+ RFSoC
ZCU216
Evaluation Kit

x x x x x This board supports
PS Ethernet.

Xilinx
Versal®

Versal AI Core
Series VCK190
Evaluation Kit

x x x x

a FIL over PCI Express® connection is supported only for 64-bit Windows® operating systems.

See Also

More About
• “FPGA-in-the-Loop Simulation”
• “FPGA-in-the-Loop Simulation Workflows”
• “Data Capture Workflow” on page 6-2
• “Set Up AXI Manager” on page 3-2

 Xilinx FPGA Board Support from HDL Verifier

1-5

Supported EDA Tools and Hardware

Software
Xilinx Vivado and ISE

Use this support package with these recommended versions:

• Xilinx Vivado 2022.1
• Xilinx ISE 14.7

• Xilinx ISE is not supported for FPGA data capture or AXI manager.
• Xilinx ISE is required for FPGA boards in the Spartan-6, Virtex-4, Virtex-5, and Virtex-6

families.

For tool setup instructions, see “Set Up FPGA Design Software Tools”.

Board Connections
JTAG Connection

You can run FPGA-in-the-loop, FPGA data capture, or AXI manager over a JTAG cable to your board.
However, each feature requires exclusive use of the JTAG cable, so you cannot run more than one
feature at the same time. To allow other tools access to the JTAG cable, such as programming the
FPGA, and Xilinx ChipScope, you must discontinue the JTAG connection in MATLAB. To release the
JTAG cable:

• FPGA-in-the-loop — Close the Simulink model, or call the release method of the System object™.
• FPGA data capture — Close the FPGA Data Capture tool, release the System object, or close the

Simulink model.
• AXI manager — Call the release method of the object.

However, the nonblocking capture mode enables you to simultaneously use FPGA data capture and
AXI manager, which share a common JTAG interface. For more information, see the "Simultaneous
Use of FPGA Data Capture and AXI Manager" section of “JTAG Considerations” on page 6-11.

For Xilinx boards, the JTAG clock frequency is 33 or 66 MHz. The JTAG frequency depends on the
type of cable and the maximum clock frequency supported by the FPGA board.

Required Hardware Required Software
Digilent download cable.

• If your board has an onboard
Digilent USB-JTAG module,
use a USB cable.

• If your board has a standard
Xilinx 14 pin JTAG connector,
you can obtain an HS2 or
HS3 cable from Digilent.

• For Windows operating systems: Xilinx Vivado executable
directory must be on system path.

• For Linux® operating systems: Digilent Adept 2. For the
installation steps, see “Install Digilent Adept 2 Runtime” on
page 1-14.

1 HDL Verifier Support for Xilinx FPGA Boards

1-6

Required Hardware Required Software
FTDI USB-JTAG cable

• Supported for boards with
onboard FT4232H, FT232H,
or FT2232H devices
implementing USB-to JTAG

Install these D2XX drivers.

• For Windows operating systems: 2.12.28 (64 bit)
• For Linux operating systems: 1.4.22 (64 bit)

For the installation guide, see D2XX Drivers from the FTDI Chip
website.

Note When simulating your FPGA design through Digilent JTAG cable with Simulink or MATLAB, you
cannot use any debugging software that requires access to the JTAG; for example, Vivado Logic
Analyzer.

Ethernet Connection

You can run FPGA-in-the-loop, FPGA data capture, or AXI manager over an Ethernet connection. To
use FPGA data capture and AXI manager over an Ethernet connection in a single HDL project,
connect the FPGA data capture and AXI manager IPs to the same Ethernet MAC Hub IP using
different port addresses.

Required Hardware Supported Interfaces Required Software
• Gigabit Ethernet card
• Cross-over Ethernet cable
• FPGA board with supported

Ethernet connection

• Gigabit Ethernet — GMII
• Gigabit Ethernet — RGMII
• Gigabit Ethernet — SGMII
• Ethernet — MII
• Ethernet — RMII

There are no software
requirements for an Ethernet
connection, but ensure that the
firewall on the host computer
does not prevent UDP
communication.

Note

• FPGA data capture and AXI manager support GMII, MII, and SGMII interfaces only.
• RMII is supported with Vivado versions older than 2019.2.
• Ethernet connection to Virtex-7 VC707 not supported for Vivado versions older than 2013.4.

PCI Express

FPGA-in-the-loop over a PCI Express connection is supported only for 64-bit Windows operating
systems.

AXI manager is supported over PCI Express for Xilinx Kintex UltraScale+ FPGA KCU116 Evaluation
Kit boards.

 Supported EDA Tools and Hardware

1-7

https://ftdichip.com/drivers/d2xx-drivers/

Board Required Software
• Kintex-7 KC705 Evaluation Kit
• Virtex -7 VC707 Evaluation Kit
• Xilinx Virtex-7 VC709 Evaluation Board
• Virtex UltraScale+ FPGA VCU118 Evaluation Kit

Vivado 2017.4 or newer.

See Also

More About
• “FPGA-in-the-Loop Simulation”
• “FPGA-in-the-Loop Simulation Workflows”
• “Data Capture Workflow” on page 6-2
• “Set Up AXI Manager” on page 3-2

1 HDL Verifier Support for Xilinx FPGA Boards

1-8

Download HDL Verifier FPGA Board Support Packages

In this section...
“HDL Verifier Support Package for Xilinx FPGA Boards” on page 1-9
“Install with Connection to Internet” on page 1-9
“Install Support Package Offline” on page 1-10

HDL Verifier Support Package for Xilinx FPGA Boards
The support package for Xilinx FPGA boards contains the board definition files for FPGA-in-the-Loop
(FIL) simulation with HDL Verifier and supported Xilinx hardware. To perform FIL simulation with
Xilinx FPGA boards, first download the Xilinx FPGA board support package.

To install support packages:

• On the MATLAB Home tab, in the Environment section, click Add-Ons > Get Hardware
Support Packages.

You can also download FPGA board support packages from within the FPGA-in-the-Loop Wizard or the
FPGA Board Manager.

Install with Connection to Internet
From the FPGA Board Manager

1 In the MATLAB command window, enter the following command:

fpgaBoardManager
2 In the FPGA Board Manager dialog box, click Get More Boards.

 Download HDL Verifier FPGA Board Support Packages

1-9

From the FIL Wizard

1 In the MATLAB command window, enter the following command:

filWizard
2 In the FIL Options pane, at Board Name, select Get more boards from the drop-down menu.

Install Support Package Offline
To install the support packages without an internet connection, first download the packages on a
computer that does have an internet connection.

1 On the computer with the internet connection, start MATLAB.
2 On the MATLAB Home tab, in the Environment section, click Add-Ons > Get Hardware

Support Packages.
3 Select your desired support package, and use the Install button pull-down menu to select

Download Only....
4 Accept the license and select a folder for the download.
5 Copy the entire downloaded folder, for example, the R2016b folder, to a shared network drive or

removable media, such as a USB drive.

Then, on the computer where you want to install the support packages:

1 Copy the downloaded folder to the host computer.
2 To start the installer, run the install_supportsoftware.exe executable file.

1 HDL Verifier Support for Xilinx FPGA Boards

1-10

3 Follow the installer prompts to install the support package. If you do actually have an internet
connection, you are prompted to log in to your MathWorks® account.

See Also

Related Examples
• “Block Generation with the FIL Wizard”
• “System Object Generation with the FIL Wizard”
• “Customize Xilinx FPGA Board” on page 1-12

 Download HDL Verifier FPGA Board Support Packages

1-11

Customize Xilinx FPGA Board
You can change part of the board definition file for a Xilinx FPGA board to customize it. For example,
you want to change the default interface for the ML605 to MII. However, you cannot change the
board definition file directly. Instead, make a copy of the file and then change the copied file.

Create a copy of the board definition file using the FPGA Board Manager. Follow these steps:

1 Start the FPGA Board Manager by typing the following at the MATLAB command prompt:

fpgaBoardManager
2 In the FPGA Board List, select the board you want to copy and click Clone.

3 In the Create copy dialog box, specify the file name and location and click OK. Choose a new file
name (and, optionally, a location) so that the original definition file is preserved.

4 Specify FPGA board information for the copy to customize it. By default, the copy inherits its
information from the original, so you have to change only those fields that differ.

5 Click OK.

The copy of the original board now appears in the FPGA Board List. It also appears on the Board
Name list in the FPGA-in-the-Loop Wizard and you can use the board with FIL simulation.

1 HDL Verifier Support for Xilinx FPGA Boards

1-12

See Also

Related Examples
• “FPGA Board Customization”
• “FPGA Board Manager”

 Customize Xilinx FPGA Board

1-13

Install Digilent Adept 2 Runtime
Supported Platforms: Linux

Digilent Adept 2 Runtime contains the libraries needed to use the Digilent download cable on Linux
operating systems.

Download Digilent Adept 2 Runtime Installer
Download the latest version of the Digilent Adept 2 Runtime installer from the Digilent website at
Adept 2 - Digilent Reference. Click on the installer link, follow the instructions, and set Operating
System to Linux 64-bit Zip. The installer is in the TAR.GZ format.

Install Digilent Adept 2 Runtime
Install Digilent Adept 2 Runtime by entering the following commands in the terminal.

1 Switch to the root user.

sudo su

Enter the password for the root user.
2 Create the /tmp/digilent_install installation directory.

root@user:/home/user# mkdir -p /tmp/digilent_install
3 Copy the downloaded Digilent Adept 2 Runtime installer to the directory you created for the

purpose of installation. For example, if you downloaded the Runtime version 2.26.1, copy the
digilent.adept.runtime_2.26.1-x86_64.tar.gz file to the /tmp/digilent_install
directory.

Note The version part of the installer file name (2.26.1) changes from one version to the next.
4 Change the directory to /tmp/digilent_install.

root@user:/home/user# cd /tmp/digilent_install
5 Make the tar file executable. For example, if you are making the

digilent.adept.runtime_2.26.1-x86_64.tar.gz file executable, in the terminal, type:

root@user:/tmp/digilent_install# chmod +x \
> digilent.adept.runtime_2.26.1-x86_64.tar.gz

6 Decompress the installer. For example, if you are decompressing the
digilent.adept.runtime_2.26.1-x86_64.tar.gz file, in the terminal, type:

root@user:/tmp/digilent_install# tar -xvzf \
> digilent.adept.runtime_2.26.1-x86_64.tar.gz

7 Change the directory to the one whose name starts with digilent.adept.runtime. For
example, if you are installing Digilent Adept 2 Runtime version 2.26.1, in the terminal, type:

1 HDL Verifier Support for Xilinx FPGA Boards

1-14

https://digilent.com/reference/software/adept/start

root@user:/tmp/digilent_install# cd \
> digilent.adept.runtime_2.26.1-x86_64

8 Make the install script executable. For example, if you are installing Digilent Adept 2 Runtime
version 2.26.1, in the terminal, type:

root@user:/tmp/digilent_install/digilent.adept.runtime_2.26.1-x86_64# \
> chmod +x install.sh

9 Run the install script. For example, if you are installing Digilent Adept 2 Runtime version 2.26.1,
in the terminal, type:

root@user:/tmp/digilent_install/digilent.adept.runtime_2.26.1-x86_64# \
> ./install.sh

10 The Digilent Adept 2 Runtime installer displays the log information in the terminal. The installer
asks you in which directory to install the libraries, system binaries, data files, and Adept Runtime
Configuration file. Select the default directories by pressing the Enter key. To confirm the
successful installation of the libraries on the /usr/lib64 path, in the terminal, type:

ls -l /usr/lib64/digilent/adept

See Also

External Websites
• Adept 2 - Digilent Reference

 Install Digilent Adept 2 Runtime

1-15

https://digilent.com/reference/software/adept/start

Setup and Configuration

2

Guided Hardware Setup
Before you can use the features in the HDL Verifier Support Package for Xilinx FPGA Boards, you
must establish communication between the host and the hardware board. After the installer
completes the support package installation, it guides you through the process of establishing
communication with the hardware board.

If the support package is already installed, you can start the hardware setup by opening the Add-On
Manager.

In the Add-On Manager, start the hardware setup process by clicking the Gear icon .

The setup process includes these steps:

• Specify a hardware board and interface.
• Configure the network interface card in the host computer (for the Ethernet interface only).
• Copy or transfer the compatible SD card image files for the hardware board to an SD card drive

path (for the Ethernet interface on Zynq SoC boards only).
• Configure your hardware board to start up from the SD card (for the Ethernet interface on Zynq

SoC boards only).
• Install the PCIe driver on the host computer (for the PCI Express interface only).
• Connect your hardware board to the host computer (for the Ethernet interface on Zynq SoC

boards only).
• Verify the connection between the host computer and the hardware board.

Select Board and Interface
Choose a hardware board and an interface to use with this board from the list. For the full list of
supported boards and interfaces, see “Supported Xilinx FPGA Boards” on page 1-2. HDL Verifier
supports a PCI Express connection for FPGA-in-the-loop (FIL) with Windows operating systems only.

Setup Checklist
The guided setup wizard displays a checklist of the hardware requirements. Confirm that you have
the hardware required to complete the setup process.

Note Do not connect to the board or turn it on until you are prompted at a later step.

2 Setup and Configuration

2-2

Ethernet Requirements

• FPGA development board
• USB-JTAG cable
• Installed Vivado software
• Dedicated Gigabit network interface card (NIC) or USB 3.0 Gigabit Ethernet adapter dongle
• Ethernet cable
• Power supply adapter (if the board requires one)

Ethernet on Zynq SoC or Versal Board Requirements

• Zynq SoC or Versal board
• Dedicated Gigabit NIC or USB 3.0 Gigabit Ethernet adapter dongle
• Ethernet cable
• Power supply adapter (if the board requires one)
• Memory secure digital (SD) card and SD card reader

JTAG Requirements

• FPGA or SoC development board
• USB-JTAG cable
• Installed Vivado software
• Installed Digilent Adept 2 Runtime (for Linux operating systems only)
• Power supply adapter (if the board requires one)

PCI Express Requirements

• FPGA development board
• USB-JTAG cable
• Installed Vivado software
• PCI Express slot and available space on the motherboard
• Power supply adapter (if the board requires one)

Setup Steps
The guided setup wizard displays the setup steps for the selected interface. Follow these steps to set
up your hardware board with the selected interface.

Ethernet

1 Make sure that the board power switch is off during these setup steps. You are prompted to turn
the power on at a later step.

2 Connect the AC power cord to the power plug and plug the power supply adapter cable into the
hardware board.

3 Use the crossover Ethernet cable to connect the Ethernet connector on the hardware board
directly to the Ethernet adapter on your host computer.

4 Use the USB-JTAG download cable to connect the hardware board to the host computer.

 Guided Hardware Setup

2-3

5 Make sure that all the jumpers on the hardware board are in the factory default position.
6 Turn the power switch of the hardware board on.

Ethernet on Zynq SoC Board

1 Make sure that the board power switch is off during these setup steps. You are prompted to turn
the power on at a later step.

2 Follow the guided setup to:

a Configure the network interface card in the host computer. See “Configure NIC on Host
Computer” on page 2-6.

b Copy the compatible SD card image files for the hardware board to an SD card drive path.
See “Select a Drive and Load Firmware” on page 2-7.

c Configure the jumpers on the hardware board. See “Set Jumper Switches” on page 2-8.
d Connect the hardware board. See “Connect Hardware” on page 2-13.

Ethernet on Versal Board

The Versal board supports Ethernet connection for FIL, but not through the guided setup.

1 Make sure that the board power switch is off during these setup steps.
2 Follow these manual steps setup to:

a Configure the network interface card in the host computer. See “Configure Network
Interface Card (NIC) on Development Computer” on page 2-17.

b To copy the compatible image files to an SD card drive path, use the
copyImageToHostSDCardPath function.

c Configure the jumpers on the hardware board. See “Set Jumper Switches” on page 2-8.
d Connect the hardware board. See “Connect Hardware” on page 2-13.

JTAG

1 Make sure that the board power switch is off during these setup steps. You are prompted to turn
the power on at a later step.

2 Connect the AC power cord to the power plug and plug the power supply adapter cable into the
hardware board.

3 Use the USB-JTAG download cable to connect the hardware board to the host computer.
4 Make sure that all the jumpers on the hardware board are in the factory default position.
5 Turn the power switch of the hardware board on.

PCI Express

1 Make sure that the board power switch is off during these setup steps. You are prompted to turn
the power on at a later step.

2 Select the maximum number of PCI Express lanes that the board supports. For details, refer to
the user manual for the board.

2 Setup and Configuration

2-4

Supported Board PCI Express Setup Documentation
Kintex-7 KC705 Set jumper J32 so that it

connects pins 5 and 6. This
setting selects 8-lane PCIe
(default board setting).

https://www.xilinx.com/
products/boards-and-kits/ek-
k7-kc705-g.html

Virtex-7 VC707 Set jumper J49 so that it
connects pins 5 and 6. This
setting selects 8-lane PCIe
(not the default board
setting).

https://www.xilinx.com/
products/boards-and-kits/ek-
v7-vc707-g.html

3 Turn the host computer off.
4 Install the hardware board in a PCI Express slot inside the host computer.

This figure shows the VC707 board installed in a host computer. The power cable is on the right.
This installation applies to all supported Xilinx boards.

5 Plug the external power supply into the wall outlet. Then, plug the power supply adapter cable
into the hardware board.

6 Connect the JTAG cable to the hardware board and the host computer. The JTAG cable is required
to program the FPGA.

 Guided Hardware Setup

2-5

https://www.xilinx.com/products/boards-and-kits/ek-k7-kc705-g.html
https://www.xilinx.com/products/boards-and-kits/ek-k7-kc705-g.html
https://www.xilinx.com/products/boards-and-kits/ek-k7-kc705-g.html
https://www.xilinx.com/products/boards-and-kits/ek-v7-vc707-g.html
https://www.xilinx.com/products/boards-and-kits/ek-v7-vc707-g.html
https://www.xilinx.com/products/boards-and-kits/ek-v7-vc707-g.html

7 Turn the power switch of the hardware board on.
8 Start up the host computer.

Configure NIC on Host Computer
This step is required only when you select the Ethernet interface.

In this step, you configure the host computer so that it can communicate with the hardware board.
You must have a dedicated Gigabit Ethernet NIC for the hardware board, with an Ethernet cable
connecting the card to your hardware board. If you also want simultaneous internet access and you
do not have a wireless connection, your host computer requires a second Ethernet NIC.

In the guided setup, select the NIC that you want to connect with the hardware board. If you have
already configured the NIC, select Skip this step if your network card is already configured for
communicating with the FPGA or SoC board.

The list displays the connected NICs detected on your host computer. The menu options show each
NIC as (In Use) or (Available). The installer marks an NIC as (In Use) when the NIC is
connected to a device and has an assigned IP address.

If you do not see your NIC listed, click Refresh to trigger the NIC detection and refresh the list.
Refreshing the list is useful when, for example, you plug in a USB Ethernet adapter dongle while
viewing this pane.

• If all the NICs listed are in use, free up a NIC for use with the hardware and then click Refresh.
• If the NIC list is empty, VMWare software, if present, can interfere with NIC detection. To get an

accurate list of NICs on your host computer, remove the VMWare software.
• Check whether the missing NIC is disabled in the control panel. If the NIC is disabled, enable it.

2 Setup and Configuration

2-6

Leave the IP address for the NIC as the default. Alternatively, specify the IP address in dotted quad
format, for example, 192.168.0.1.

When you click Next, the software configures the NIC.

Note Guided setup does not support Ethernet on Versal boards. For manual configuration, see
“Configure Network Interface Card (NIC) on Development Computer” on page 2-17.

Select a Drive and Load Firmware
This step is required only when you select the Ethernet interface on a Zynq SoC board.

Next, the installer must write an FPGA image to an SD card. This FPGA image is included with the
support package. The image includes the embedded software and the FPGA programming file
necessary for using the hardware board as an I/O peripheral.

1 Insert an SD card into the card reader on the host computer.

• 8 GB or larger for Versal boards
• 4 GB or larger for other boards

The card must be in FAT32 format. Select the appropriate drive from the list. If you have already
downloaded the FPGA image, skip this step.

Note Unlock the SD card before downloading the firmware image to the card. Keep the card
unlocked while the card is in the Zynq board card reader.

2 Write the FPGA image to the SD card. In the guided setup, select the location of the SD drive
containing the card, then click Next. On the next screen, to copy the programming file from the
host computer to the SD card, click Write. This process erases any existing data on the card.

 Guided Hardware Setup

2-7

Note Guided setup does not support Ethernet on Versal boards. Use the
copyImageToHostSDCardPath function.

Install PCI Express Driver
This step is required only when you select the PCI Express interface.

If you have already installed the PCI Express drivers, skip this step.

Install the PCI Express drivers before you use FIL, FPGA data capture, or AXI manager with a PCI
Express connection. This step performs the driver installation for you. The process can take 10 or
more minutes to install, and might require system administrator privileges.

You can install the drivers now, or you can choose to perform the setup again later. To run the support
package setup, on the MATLAB Home tab, in the Environment section, select Help > Check for
Updates.

Set Jumper Switches
This step is required only when you select the Ethernet interface on a Versal or Zynq SoC board or
the PCI Express interface.

Configure the jumpers on the Versal or Zynq SoC board so that you can use it as a peripheral device.
These jumper settings make it so that the board starts up from the SD card. Make sure that the board
is turned off.

The jumper settings are different for each board. To learn more about the settings, see the board
documentation.

Set Jumpers on Versal VCK190

SW1 Switch Positions

Switch Switch Position
1 Up
2 Down
3 Down
4 Down

2 Setup and Configuration

2-8

Set Jumpers on ZCU102

SW6 Switch Positions

Switch Switch Position
1 Up
2 Down
3 Down
4 Down

Set Jumpers on ZCU111

SW6 Switch Positions

Switch Switch Position
1 Up
2 Down
3 Down
4 Down

 Guided Hardware Setup

2-9

Set Jumpers on ZCU216

SW2 Switch Positions

Switch Switch Position
1 Up
2 Down
3 Down
4 Down

Set Jumpers on ZC702

JTAG Select Jumper Positions

Switch Switch Position
Top Left
Bottom Right

SW10 Jumper Positions

Switch Switch Position
1 Down
2 Down
3 Up
4 Up
5 Down

2 Setup and Configuration

2-10

Set Jumpers on ZC706

SW11 Jumper Positions

Switch Switch Position
1 Down
2 Down
3 Up
4 Up
5 Down

 Guided Hardware Setup

2-11

Set Jumpers on ZedBoard

Jumper Positions

Switch Switch Position
1 Down
2 Up
3 Up
4 Down
5 Down

2 Setup and Configuration

2-12

Connect Hardware
This step is required only when you select the Ethernet interface on a Versal or Zynq SoC board.

Follow these instructions for connecting the hardware. The guided setup wizard provides labeled
pictures of the steps for each board.

1 Remove the SD card from the host computer and insert it into the hardware board.
2 Connect an Ethernet cable to the board. Connect the other end of the Ethernet cable to the

selected NIC.
3 Connect the power cable.
4 Turn the power on.

Connect VCK190 Board

 Guided Hardware Setup

2-13

Connect ZCU102 Board

Connect ZCU111 Board

Connect ZCU216 Board

2 Setup and Configuration

2-14

Connect ZC702 Board

Connect ZC706 Board

Connect ZedBoard

Verify Setup
You can verify the hardware setup for Ethernet and JTAG interfaces. This step runs the tests to verify
the connection between the host computer and the hardware board based on the selected interface.
Before you run the test, make sure that:

1 You have installed the appropriate vendor tool and the tool is on the MATLAB path. See “Set Up
FPGA Design Software Tools”.

2 The board is turned on.

This step runs these tests to verify the connection for the selected interface.

 Guided Hardware Setup

2-15

Ethernet

1 Generate an FPGA programming file for your hardware board.
2 Program the FPGA.
3 Detect an Ethernet connection.

Ethernet on Versal or Zynq SoC Board

1 Verify the IP address configuration on the host computer.
2 Verify the Ethernet connection between the host computer and the hardware board.
3 Zynq SoC — Read and write the memory locations on the hardware board using AXI manager.

JTAG

1 Generate an FPGA programming file for your board.
2 Program the FPGA.
3 Perform the data transaction between the FPGA and the host computer.

If the connection is not successful, the most common reasons are that the board is not connected
properly or it is not turned on. Check the cable connections and power switch and try again.

Open Examples
When the installer completes your hardware setup, you can exit the installer or open the examples to
get started.

See Also
Hardware Setup | “FPGA-in-the-Loop Simulation” | “Data Capture Workflow” on page 6-2 | “Set
Up AXI Manager” on page 3-2

See Also

Related Examples
• Verify HDL Implementation of PID Controller Using FPGA-in-the-Loop
• “Capture Temperature Sensor Data from Xilinx FPGA Board Using FPGA Data Capture” on page

8-2
• “Access FPGA Memory Using JTAG-Based AXI Manager” on page 8-15
• “Access FPGA Memory Using Ethernet-Based AXI Manager” on page 8-24
• “Access FPGA External Memory Using AXI Manager over PCI Express” on page 8-28

2 Setup and Configuration

2-16

Configure Network Interface Card (NIC) on Development
Computer

To connect the Xilinx devices to the development computer, you must configure an available network
connection on the development computer. Follow the steps outlined for your specific operating
system.

Windows
1 Open the Control Panel.
2 Set View by to Category.
3 Click Network and Internet.
4 Click Network and Sharing Center.
5 On the left pane, click Change adapter settings.
6 Right-click the local area network connection that is connected to the radio hardware and select

Properties.

• If an unused network connection is available, the local area connection appears as
Unidentified network.

• If you plan to reuse your network connection, select the local area connection that you plan to
use for the radio hardware.

• If you have only one network connection, check if you can connect wirelessly to the existing
local area network. If you can, you can use the network connection for the radio hardware.

• You can use a pluggable USB to Gigabit Ethernet LAN adapter instead of a NIC. The
instructions are the same.

7 On the Networking tab of the Properties dialog box, clear all options except Internet Protocol
Version 4 (TCP/IPv4). Other services, particularly antiviral software, can cause intermittent
connection problems with the radio hardware.

8 Double-click Internet Protocol Version 4 (TCP/IPv4).
9 On the General tab, select Use the following IP Address.
10 Leave the subnet mask set to the default value of 255.255.255.0 and click OK.

Linux
1 Set the host network IP address to 192.168.1.x, where x is any number in the range 1 through

255, apart from 101. Set this value using the ifconfig command.

% sudo ifconfig ethZ 192.168.3.3 netmask 255.255.255.0

In this syntax, ethZ is the name of the host Ethernet port (usually eth0, eth1, and so on). To use
the sudo command, you might have to enter a password.

2 Confirm the changes by entering the following command in the shell:

% ifconfig ethZ

 Configure Network Interface Card (NIC) on Development Computer

2-17

Hardware Setup
Set up and connect your hardware boards

Description
Hardware boards supported by MathWorks require additional setup steps to connect to MATLAB and
Simulink software. The Hardware Setup tool guides you through the hardware setup process. Use
this tool to configure a target hardware board for use with FPGA-in-the-loop (FIL), FPGA data
capture, and AXI manager over the JTAG, Ethernet, and PCI Express interfaces. For the full list of
supported boards and interfaces, see “Supported Xilinx FPGA Boards” on page 1-2.

The hardware setup process for the HDL Verifier Support Package for Xilinx FPGA Boards comprises
these steps:

• Specify a hardware board and interface.
• Configure the network interface card in the host computer (for the Ethernet interface only).
• Copy or transfer the compatible SD card image files for the hardware board to an SD card drive

path (for the Ethernet interface on Zynq SoC boards only).
• Configure your hardware board to start up from the SD card (for the Ethernet interface on Zynq

SoC boards only).
• Install the PCIe driver on the host computer (for the PCI Express interface only).
• Connect your hardware board to the host computer (for the Ethernet interface on Zynq SoC

boards only).
• Verify the connection between the host computer and the hardware board.

2 Setup and Configuration

2-18

Open the Hardware Setup
• In the install window, at the end of the installation process, click the Setup Now button.
• After installing the HDL Verifier Support Package for Xilinx FPGA Boards, use Get and Manage

Add-Ons. When the installation is complete, in the Add-On Manager, click the Gear icon .

Version History
Introduced in R2016a

See Also
“Guided Hardware Setup” on page 2-2

 Hardware Setup

2-19

AXI Manager

3

Set Up AXI Manager

Note MATLAB AXI master has been renamed to AXI manager. In the software and documentation,
the terms "manager" and "subordinate" replace "master" and "slave," respectively.

To access on-board memory locations from MATLAB or Simulink, you must include the AXI manager
IP in your FPGA design. This IP connects to subordinate memory locations on the board. The IP also
responds to read and write commands from MATLAB or Simulink, over JTAG, PCI Express, or
Ethernet cable.

Integrate AXI Manager IP in FPGA Design
To set up the AXI manager IP for access from MATLAB or Simulink, follow these setup steps:

1 Add the path for the AXI manager IP files to your project using the
setupAXIManagerForVivado function.

2 Open Vivado, and from the IP Catalog select the AXI manager IP in your FPGA design.

• When using JTAG as a physical connection, select AXI Manager.
• When using Ethernet as a physical connection, select UDP AXI Manager and Ethernet MAC

Hub and add them to your project.
• When using PCIe as a physical connection, select PCIe AXI Manager and add it to your

project.
3 In your FPGA project, specify which addresses the AXI manager IP is allowed to access.
4 Compile your FPGA project, including the AXI manager IP.
5 Connect your FPGA board to your host computer using a physical cable (JTAG, PCI Express, or

Ethernet cable).

3 AXI Manager

3-2

6 Program the FPGA with your compiled design.

Note Alternatively, you can perform these steps in the HDL Coder™ guided workflow by using a
sample reference design, such as the one included in this example: “Access DUT Registers on Xilinx
Pure FPGA Board Using IP Core Generation Workflow” on page 8-37.

After loading the design on your FPGA, you can access memory-mapped locations on the board.

To access the board from MATLAB, create an aximanager object and use the readmemory and
writememory methods to read and write memory-mapped locations on the board.

To access the board from Simulink, create a Simulink model and include AXI Manager Write and AXI
Manager Read in it. Configure the blocks to read and write memory-mapped locations on the board.
For more information, see “Use Simulink to Access FPGA Locations” on page 3-4.

JTAG Considerations
When using JTAG as a physical connection to your board, you might have additional IPs that use the
same JTAG connection. Such IPs include Intel® SignalTap II or Xilinx Vivado Logic Analyzer cores.
However, only one of these applications can use the JTAG cable at a time. You must release the
aximanager object to return the JTAG resource for use by other applications.

However, the nonblocking capture mode enables you to simultaneously use FPGA data capture and
AXI manager, which share a common JTAG interface. In this capture mode, you do not need to close
or release the JTAG resource to switch between FPGA data capture and AXI manager. For more
information, see “Simultaneous Use of FPGA Data Capture and AXI Manager” on page 6-12.

The most common conflicting use of the JTAG cable is to reprogram the FPGA. You must stop any
FPGA data capture or AXI manager JTAG connection before you can use the cable to program the
FPGA.

The maximum data rate between host computer and FPGA is limited by the JTAG clock frequency. For
Intel boards, the JTAG clock frequency is 12 MHz or 24 MHz. For Xilinx boards, the JTAG clock
frequency is 33 MHz or 66 MHz. The JTAG frequency depends on the type of cable and the maximum
clock frequency supported by the FPGA board.

See Also
aximanager | AXI Manager Read | AXI Manager Write

Related Examples
• “Access FPGA Memory Using JTAG-Based AXI Manager” on page 8-15
• “Ethernet AXI Manager” on page 3-10
• “PCI Express AXI Manager” on page 3-6
• “Access DUT Registers on Xilinx Pure FPGA Board Using IP Core Generation Workflow” on page

8-37

 Set Up AXI Manager

3-3

Use Simulink to Access FPGA Locations

Note MATLAB AXI master has been renamed to AXI manager. In the software and documentation,
the terms "manager" and "subordinate" replace "master" and "slave," respectively.

To read and write memory-mapped locations on your FPGA board using Simulink, you must first
integrate an AXI manager IP into your FPGA design. For more information, see “Integrate AXI
Manager IP in FPGA Design” on page 3-2.

After integrating an AXI manager IP into your FPGA design, load the design on the FPGA. Then,
create a Simulink model that includes source, sink, AXI Manager Write, and AXI Manager Read
blocks, as in this figure.

Configure the AXI Manager Write block. Set the write Address and Burst type parameters. On the
Interface tab, select the type of interface used for communication with the FPGA board by using the
Type parameter. Then, click Configure global parameters to configure the global interface
parameters for that AXI manager interface.

Next, configure the AXI Manager Read block. Set the read Address, Burst type, Output data type,
and Output vector size parameters. On the Interface tab, select the type of interface used for
communication with the FPGA board by using the Type parameter.

Run the simulation. For each Simulink step, the write block writes to the FPGA, and the read block
reads from the FPGA. View the results by using the Logic Analyzer app, or directing the data to a
file.

This figure shows the input and output data displayed in the Logic Analyzer app. In this example,
the AXI Manager Write block writes 100 to address 0, and the AXI Manager Read block reads from
the same address.

3 AXI Manager

3-4

See Also
AXI Manager Read | AXI Manager Write

More About
• “Set Up AXI Manager” on page 3-2

 Use Simulink to Access FPGA Locations

3-5

PCI Express AXI Manager

Note PCI Express AXI master has been renamed to PCI Express AXI manager and the PCIe MATLAB
as AXI Master IP has been renamed to the PCIe AXI Manager IP. In the software and documentation,
the terms "manager" and "subordinate" replace "master" and "slave," respectively.

When using PCI Express AXI manager, you must first include the following two intellectual property
(IP) blocks in your Xilinx Vivado project.

• PCIe AXI Manager IP
• PCI Express Core

PCIe AXI Manager IP
PCIe AXI Manager is an HDL IP provided by MathWorks. This IP connects the PCI Express (PCIe)
core to your application code. The IP has a configuration port for accessing configuration registers.
This block diagram shows the interface to the HDL IP. To know how to include the PCIe AXI Manager
IP in your FPGA design, see “Set Up AXI Manager” on page 3-2.

The interface includes the following parts:

• clock and resetn are the clock and reset inputs. Connect them to the AXI clock and reset.
• axs_s0 is a 32-bit subordinate interface and is used for accessing the PCIe configuration

registers. Connect this interface to the Kintex UltraScale+ FPGA KCU116 memory mapped
manager interface.

• axm_pcie is a 128-bit AXI manager interface. Connect this interface to the S_AXI_B subordinate
port on the PCIe core.

• axm_app is a 128-bit AXI manager interface. Connect this interface to your application logic.

After instantiating this IP in your design, open the block parameters for configuration.

3 AXI Manager

3-6

Configure these parameters:

• AXI Address Width – This parameter is the address bus width. The IP supports 32-bit address.
• AXI Data Width – This parameter is the data bus width. The IP supports 128-bit or 256-bit data.

Note that this parameter is not identical to the data width of the aximanager object or the AXI
Manager Read or AXI Manager Write blocks. If the data width is set to 32 bits, and the AXI Data
Width of your IP is set to 128 bits, HDL Verifier packs four 32-bit words to transfer on the 128-bit
bus.

• ID Width – This parameter is the ID width in bits. Its value must match the ID width of the AXI
subordinate.

PCI Express Core
The DMA/Bridge Subsystem for PCI Express Core is a board-specific IP provided by Xilinx. Use this IP
for configuring and integrating the PCI Express port. For more information on how to include this IP
in your FPGA design, see “Set Up AXI Manager” on page 3-2.

After instantiating the PCIe core HDL IP in your Xilinx Vivado project, configure the PCIe core using
these steps. This example is for a Kintex UltraScale+ FPGA KCU116 board.

1 On the Basic tab, set the parameters as shown in this figure.

 PCI Express AXI Manager

3-7

2 On the PCIe ID tab, set the parameters as shown in this figure.

The ID Initial Values listed in the PCIe tab screen are the required PCIe ID settings to ensure
compatibility with MathWorks PCIe device driver for Xilinx FPGA boards.

3 Connect the PCIe AXI Manager IP to the PCIe core. This example shows the Kintex UltraScale+
FPGA KCU116 DMA/Bridge Subsystem IP for PCI Express.

3 AXI Manager

3-8

4 Compile and build your FPGA project.
5 Insert the FPGA board into the PCI Express slot on the motherboard of the host machine.
6 Program FPGA with the bitstream generated for your design.
7 Restart the host machine.

Once the program is running on your FPGA board, you can create an AXI manager object in your
MATLAB command window. For more information, see aximanager. To access the subordinate
memory locations on the board, use the readmemory and writememory functions of this object.

See Also
aximanager

Related Examples
• “Access FPGA External Memory Using AXI Manager over PCI Express” on page 8-28

More About
• “Set Up AXI Manager” on page 3-2

 PCI Express AXI Manager

3-9

Ethernet AXI Manager

Note Ethernet AXI master has been renamed to Ethernet AXI manager and the UDP MATLAB as AXI
Master IP has been renamed to the UDP AXI Manager IP. In the software and documentation, the
terms "manager" and "subordinate" replace "master" and "slave," respectively.

Integrate and configure AXI manager over Ethernet using user datagram protocol (UDP). To use
Ethernet AXI manager, you must first include these two intellectual property (IP) blocks in your
project: Ethernet media access controller (MAC) Hub and UDP AXI Manager.

Ethernet MAC Hub IP
The Ethernet MAC Hub IP connects the Ethernet physical layer (PHY) to the UDP AXI Manager IP.
Use the following Ethernet MAC Hub IPs to connect the target FPGA board through various types of
interfaces.

• Ethernet MAC Hub GMII IP — This IP supports the gigabit media independent interface (GMII).
• Ethernet MAC Hub MII IP — This IP supports the media independent interface (MII).
• Ethernet MAC Hub GMII IP and 1G/2.5G Ethernet PCS/PMA or SGMII Xilinx IP — Connect these

two IPs to support the serial gigabit media independent interface (SGMII).

Interface of Ethernet MAC Hub IP

The following tables provide the port description of Ethernet MAC Hub GMII and Ethernet MAC Hub
MII.

3 AXI Manager

3-10

Port Description
s0_axis AXI-stream subordinate interface. Connect this port to the m_axis port on the

UDP AXI Manager IP.
m0_axis AXI-stream manager interface. Connect this port to the s_axis port on the UDP

AXI Manager IP.

Ethernet MAC Hub GMII IP Ports

Port Direction Description
ref_clk Input Reference clock signal that drives phy_gtxclk. The frequency of

ref_clk must be the same as the phy_rxclk clock frequency.
ref_reset Input IP reset signal.
phy_rxclk Input Receive clock from PHY.
phy_rxd[7:0] Input Receive data signal from PHY.
phy_rxdv Input Receive data valid control signal from PHY.
phy_rxer Input Receive error signal from PHY.
rxclk_en Input Receiver clock enable.
txclk_en Input Transmitter clock enable.
phy_col Input Collision detect signal from PHY.
phy_crs Input Carrier sense detect signal from PHY.
axis_aclk Input Clock signal for AXI-stream interface.
phy_gtxclk Output Clock to PHY.
phy_txd[7:0] Output Transmit data signal to PHY.
phy_txen Output Transmit enable control signal to PHY.
phy_txer Output Transmit error signal to PHY.
axis_aresetn Output Active-low reset. Reset signal for AXI-stream interface. You can use

this port to reset the downstream AXI peripherals.

Ethernet MAC Hub MII IP Ports

Port Direction Description
axis_aclk Input Clock signal for AXI-stream interface.
reset Input IP reset signal.
mii_col Input Collision detect signal from PHY.
mii_crs Input Carrier sense detect signal from PHY.
mii_rxclk Input Receive clock signal from PHY.
mii_rxd[3:0] Input Receive data signal from PHY.
mii_rxdv Input Receive data valid control signal from PHY.
mii_rxer Input Receive error signal from PHY.
mii_txclk Input Transmit clock signal from PHY.

 Ethernet AXI Manager

3-11

Port Direction Description
axis_aresetn Output Active-low reset. Reset signal for AXI-stream interface. You can use

this port to reset the downstream AXI peripherals.
mii_txd[3:0] Output Transmit data signal to PHY.
mii_txen Output Transmit enable control signal to PHY.
mii_txer Output Transmit error signal to PHY.
phy_mdc Output Management data clock (MDC) signal to PHY.
phy_mdio Inout Data signal for communication with management data input/output

(MDIO) controller.
phy_reset_n Output Active-low reset signal to PHY.

For more information about port connections, see “Access FPGA Memory Using Ethernet-Based AXI
Manager” on page 8-24.

Ethernet MAC Hub IP Connections for SGMII

For an SGMII, connect the Ethernet MAC Hub GMII IP to the 1G/2.5G Ethernet PCS/PMA or SGMII
Xilinx IP as this figure shows.

3 AXI Manager

3-12

Based on the type of Ethernet interface of your target FPGA board, instantiate the Ethernet MAC Hub
GMII or Ethernet MAC Hub MII HDL IP in your design. After instantiating the Ethernet MAC Hub IP
in your design, open the block parameters for configuration. This figure shows the block parameters
for the Ethernet MAC Hub GMII IP.

Ethernet MAC Hub IP Parameters

Configure these parameters:

• Number of AXI Stream Channels — This parameter decides the number of AXI-stream channels
in the Ethernet MAC Hub IP. Select this value as an integer from 1 to 8. The default value is 1.

• IP Address Byte1, IP Address Byte2, IP Address Byte3, IP Address Byte4 — These
parameters set the four bytes in the range from 0 to 255 composing the UDP internet protocol (IP)
address of the device. This address must match the DeviceAddress property value of the
aximanager object.

• UDP Port For Channel 1, UDP Port For Channel 2, UDP Port For Channel 3, UDP Port For
Channel 4, UDP Port For Channel 5, UDP Port For Channel 6, UDP Port For Channel 7,
UDP Port For Channel 8 — These parameters set the UDP port numbers. Specify each
parameter value as an integer from 255 to 65,535. These port numbers must match the Port
property value of the aximanager object.

Ethernet MAC Hub IP Limitations

 Ethernet AXI Manager

3-13

• For SGMII, the clock signal for the AXI-Stream interface (axis_aclk) is limited to 50 MHz.
• Ethernet management interfaces MDC and MDIO do not enable you to configure the Ethernet

PHY.

UDP AXI Manager IP
The UDP AXI Manager HDL IP connects the Ethernet MAC Hub IP to your application IP. The UDP
AXI Manager IP acts as a bridge that translates data between an AXI peripheral and MATLAB.

Interface of UDP AXI Manager IP

The interface of the UDP AXI Manager IP includes the ports described in these tables.

Port Description
s_axis AXI-stream subordinate interface.
m_axis AXI-stream manager interface.
axi4m AXI4-full manager interface.

UDP AXI Manager IP Ports

Port Direction Description
axis_aclk Input Clock signal for AXI-stream interface.
axis_aresetn Input Active-low reset signal for AXI-stream interface.
aclk Input Clock signal for AXI4-full interface.
aresetn Input Active-low reset. Reset signal for AXI4-full interface.

After instantiating the UDP AXI Manager IP in your design, open the block parameters for
configuration.

3 AXI Manager

3-14

UDP AXI Manager IP Parameters

Configure these parameters:

• AXI Address Width — This parameter is the address bus width in bits. The IP supports 32 bits or
64 bits.

• AXI Data Width — This parameter is the data bus width in bits. The IP supports 32 bits or 64
bits.

• ID Width — This parameter is the ID width in bits. Its value must match the ID width of the AXI4
subordinate.

When the program is running on your FPGA board, you can create an AXI manager object using the
aximanager object. To access the subordinate memory locations on the board, use the readmemory
and writememory object functions.

See Also
aximanager

Related Examples
• “Access FPGA Memory Using Ethernet-Based AXI Manager” on page 8-24
• “Leverage Built-In Ethernet on Zynq to Perform Memory Access Using AXI Manager” on page 8-

31

More About
• “Set Up AXI Manager” on page 3-2

 Ethernet AXI Manager

3-15

Ethernet AXI Manager for Xilinx Zynq SoC Devices

Note Ethernet AXI master has been renamed to Ethernet AXI manager. In the software and
documentation, the terms "manager" and "subordinate" replace "master" and "slave," respectively.

To implement HDL Verifier Support Package for Xilinx Zynq-based hardware features, you must
configure the host computer and the hardware for proper communication. After you install the
support package, follow these steps to manually set up the hardware.

Step 1. Complete Hardware Checklist
Confirm that you have all required hardware and accessories to complete the hardware setup.

• Gigabit Ethernet connection – This connection is often referred to as a network connection. You
can use either an integrated network interface card (NIC) with a Gigabit Ethernet cable or a
universal serial bus (USB) 3.0 Gigabit Ethernet adapter dongle. This connection is necessary for
transmitting data, such as a programming file, from the host computer to the hardware. It is also
necessary for sending and receiving signals to and from the hardware.

• SD card reader and writable SD card – If the host machine does not have an integrated card
reader, use an external USB SD card reader.

• Supported hardware – This feature provides support to Xilinx Zynq-7000 ZC706 and Xilinx Zynq
ZedBoard boards. Do not connect or turn on the device until you are prompted at a later step.

• Ethernet cable – This cable connects the hardware to the host.

Step 2. Configure Host Computer
To connect the hardware to the host, you must configure an available network connection for the
hardware on the host. Follow the steps for your specific operating system.

Configure Windows

Follow these instructions for Windows 7 or later.

1 From the Start menu, click Control Panel.
2 Set View by to Category.
3 Click Network and Internet.
4 Click Network and Sharing Center.
5 On the left pane, click Change adapter settings.

3 AXI Manager

3-16

6 Right-click the local area network connection that is connected to the hardware and select
Properties.

• If an unused network connection is available, the local area connection appears as
Unidentified network.

• If you plan to repurpose your network connection, select the local area connection that you
plan to use for the hardware.

• If you have only one network connection, check if you can connect wireless to the existing
local area network. You can use the network connection for the hardware.

• You can use a pluggable USB to Gigabit Ethernet LAN adapter instead of a NIC.
7 On the Networking tab of the Properties dialog box, clear all options except Internet Protocol

Version 4 (TCP/IPv4). Other services, particularly antivirus software, can cause intermittent
connection problems with the hardware.

8 Double-click Internet Protocol Version 4 (TCP/IPv4).
9 On the General tab, select Use the following IP address.
10 The default IP address of the hardware is 192.168.0.2. The host network connection must be

on the same subnet as the hardware. To meet this requirement, a compatible IP address must be
assigned to the host network connection. Set the host network IP address to 192.168.0.x, where
x is either 1 or an integer in the range [3, 255].

 Ethernet AXI Manager for Xilinx Zynq SoC Devices

3-17

If the first three octets of the IP address field are not 192.168.0, then your hardware is on
another subnet. Enter the same subnet number in the IP address.

11 Leave the subnet mask set to the default value of 255.255.255.0.
12 Click OK.

Configure Linux

Set the host Ethernet interface to have a static IP address. This configuration enables communication
with the hardware. The default IP address of the hardware is 192.168.0.2. The host network
connection must be on the same subnet as the hardware. To meet this requirement, you must assign a
compatible IP address to the host network connection.

1 Set the host network IP address to 192.168.0.x, where x is either 1 or an integer in the range [3,
255]. Set this value by using the ifconfig command. For example, enter this command in the
shell.

% sudo ifconfig ethZ 192.168.0.4 netmask 255.255.255.0

In this syntax, ethZ is the name of the host Ethernet port (usually eth0, eth1, and so on). To use
the sudo command, you might have to enter a password.

2 Confirm the changes by entering this command in the shell.

% ifconfig ethZ

ethZ is the name of the host Ethernet port you set in the previous step.

Step 3. Copy Image to SD Card in Host System
You need an SD memory card that is configured with the firmware of this support package. The
firmware includes the embedded software and the FPGA programming file necessary for using the

3 AXI Manager

3-18

hardware as an I/O peripheral. If you have already copied the SD card with the required image, skip
this step.

1 Insert a 4 GB or larger SD memory card into the memory card reader on the host computer.

Note If the SD card is lockable, you must unlock it first. If you use a lockable SD card adapter
for a microSD card, you must unlock the card before inserting into the memory card reader.

2 Use the copyImageToHostSDCardPath function to copy the board-specific SD card image files
to the specified SD card drive location in the host system. The SD card image files contain a
bootloader and supported operating system information. This function also copies the server
daemon for handling the AXI manager host commands on the target SoC device.

The default SD card image is the SD card files that come with the HDL Verifier Support Package.
A custom SD card image is a user-created SD card files.

Examples

To copy a default SD card image to a specified location on the host computer on a Windows
platform for a Xilinx Zynq-7000 ZC706 board with a default IP address, enter this code at the
MATLAB command prompt.

copyImageToHostSDCardPath('ZC706','G:');

To copy a default SD card image to a specified location on the host computer for a Xilinx
Zynq-7000 ZC706 board with a custom IP address and specify the gateway on a Linux platform,
enter this code at the MATLAB command prompt. Set the host NIC address to 192.168.10.x,
where x must be an integer in the range [1, 3] or [5, 255].

copyImageToHostSDCardPath('ZC706','/media/username/261D-2F2B', ...
 'DeviceAddress','192.168.10.4','Gateway','192.168.10.1');

To copy a custom SD card image to a specified location on the host computer for a Xilinx
Zynq-7000 ZC706 board with a default IP address on a Windows platform, enter this code at the
MATLAB command prompt.

Before running this command, if your custom SD image is in a zipped format, such
as .zip, .tgz, or .gz, extract zipped format files to a specific folder or directory in your host
system.

copyImageToHostSDCardPath('ZC706','G:','SDCardImage', ...
 'C:\mywork\hdlv_prj\sdcard_image\zc706_sdcard_zynq7000');

Step 4. Update SD Card Image in SoC Device (Optional)
If you have already copied the SD card image files by using the process in “Step 3. Copy Image to SD
Card in Host System” on page 3-18, skip this step.

Use the loadImageToTargetSDCardPath function to update the SD card image in the SoC device.
Before proceeding with this step, ensure that the SD card is inserted in the target SoC device SD
card location and that an Ethernet connection is established between the host system and the target
SoC device.

This function updates the existing board-specific SD card image files in the SoC device. You might
need to wait for at least 20 seconds for the SD card to update.

 Ethernet AXI Manager for Xilinx Zynq SoC Devices

3-19

Examples

To copy a default SD card image to the target SoC device SD card location, enter this code at the
MATLAB command prompt.

loadImageToTargetSDCardPath('ZC706');

To copy a custom SD card image to the target SoC device SD card location for a Xilinx Zynq-7000
ZC706 board with the default IP address on a Windows platform, enter this code at the MATLAB
command prompt.

Before running this command, if your custom SD image is in a zipped format, such as .zip, .tgz,
or .gz, extract zipped format files to a specific folder or directory in your host system.

loadImageToTargetSDCardPath('ZC706','SDCardImage', ...
 'C:\mywork\hdlv_prj\sdcard_image\zc706_sdcard_zynq7000');

To copy a default SD card image to a specified location on the host computer for a Xilinx Zynq-7000
ZC706 board with an IP address that is different from the default value, enter this code at the
MATLAB command prompt.

loadImageToTargetSDCardPath('ZC706', ...
 'DeviceAddress','192.168.10.2','Gateway','192.168.10.1');

Step 5: Load Bitstream File to SoC Device (Optional)
Use the loadBitstream function only if you have any new FPGA design to load on the target SoC
device. Otherwise, skip this step.

This function loads the custom FPGA bitstream file and its corresponding device tree blob (DTB) file
to the target SoC device. You might need to wait for at least 20 seconds to get the changes updated to
the target SoC device.

Examples

To load a custom FPGA bitstream and its corresponding DTB file to the target SoC device for a Xilinx
Zynq-7000 ZC706 board with a default IP address, enter this code at the MATLAB command prompt.

loadBitstream('ZC706','C:\mywork\hdlv_bitstreams\system.bit', ...
 'C:\mywork\hdlv_bitstreams\devicetree.dtb');

To load a custom FPGA bitstream and its corresponding DTB file to the target SoC device for a Xilinx
Zynq-7000 ZC706 board with an IP address that is different from the default value, enter this code at
the MATLAB command prompt.

loadBitstream('ZC706','C:\mywork\hdlv_bitstreams\system.bit', ...
 'C:\mywork\hdlv_bitstreams\devicetree.dtb', ...
 'DeviceAddress','192.168.10.2');

Once the program is running on your FPGA board, you can create an AXI manager object by using the
aximanager object. To access the subordinate memory locations on the board, use the readmemory
and writememory object functions of this object.

3 AXI Manager

3-20

See Also
copyImageToHostSDCardPath | loadImageToTargetSDCardPath | loadBitstream |
aximanager

Related Examples
• “Leverage Built-In Ethernet on Zynq to Perform Memory Access Using AXI Manager” on page 8-

31

More About
• “Set Up AXI Manager” on page 3-2

 Ethernet AXI Manager for Xilinx Zynq SoC Devices

3-21

JTAG AXI Manager
Integrate and configure AXI manager over a JTAG connection. To use JTAG AXI manager, you must
first include the AXI Manager intellectual property (IP) in your Xilinx Vivado project.

AXI Manager IP
The AXI Manager IP acts as a bridge that translates data between an AXI peripheral and MATLAB or
Simulink software. This IP connects to your application IP over a JTAG connection.

This block diagram shows the interface of the AXI Manager IP.

This block diagram shows the interface of the AXI Manager IP for the Xilinx Versal devices.

AXI Manager IP Ports

The interface of the AXI Manager IP includes the ports described in these tables.

Port Description
bscan (Versal
only)

BSCAN interface to connect to CIPS IP.

axi4m AXI4-full manager interface.

Port Direction Description
aclk Input Clock signal for AXI4-full interface.
aresetn Input Active-low reset. Reset signal for AXI4-full interface.

AXI Manager IP Connections for Versal Devices

For a Xilinx Versal device, connect the AXI Manager IP to the BSCAN_USER3 interface of the Xilinx
Versal platform CIPS IP, as this figure shows.

3 AXI Manager

3-22

To enable the BSCAN_USER3 interface, enable the PL BSCAN2 interface in the CIPS IP. For more
information about the CIPS IP, see Control Interfaces and Processing System LogiCORE IP Product
Guide on the Xilinx website.

AXI Manager IP Parameters

After you include the AXI Manager IP in your design, open the block.

Configure these parameters:

• AXI Address Width — Address bus width in bits. The IP supports 32, 40, or 64 bits.
• AXI Data Width — Data bus width in bits. The IP supports 32 or 64 bits.
• ID Width — ID width in bits. The value of this parameter must match the ID width of the AXI4

subordinate.

When the program is running on your FPGA board, you can communicate with the AXI Manager IP by
creating an aximanager object. To access the subordinate memory locations on the board, use the
readmemory and writememory object functions.

See Also
aximanager | readmemory | writememory

 JTAG AXI Manager

3-23

https://docs.xilinx.com/r/3.1-English/pg352-cips
https://docs.xilinx.com/r/3.1-English/pg352-cips

Related Examples
• “Access FPGA Memory Using JTAG-Based AXI Manager” on page 8-15

More About
• “Set Up AXI Manager” on page 3-2

3 AXI Manager

3-24

AXI Manager Simulation

4

AXI Manager Simulation

Note MATLAB AXI master has been renamed to AXI manager. In the software and documentation,
the terms "manager" and "subordinate" replace "master" and "slave," respectively.

Prior to deploying your algorithm on an FPGA, you can simulate the algorithm and perform read and
write operations to simulated memory or memory-mapped registers on your board. Use the provided
SystemVerilog readmemory and writememory tasks to read and write memory-mapped locations on
the board. Simulation is available for only the Vivado Simulator, on which you can perform only
behavior simulations.

To integrate the AXI manager IP in your design, see “Integrate AXI Manager IP in FPGA Design” on
page 3-2. After you integrate the AXI manager IP in your design, create a SystemVerilog wrapper that
includes your design under test (DUT), memory interface generator (MIG), AXI manager IP, clock, and
reset logic. You can then instantiate the wrapper in a SystemVerilog test bench and simulate.

HDL Wrapper Creation
Create a wrapper for the FPGA design. The wrapper includes all of the user logic and FPGA logic. The
interface to the wrapper includes clock and reset ports and an optional DDR3 interface to the
memory or other on-board peripherals. After creating and configuring the design in Vivado, navigate
to the Sources window in Vivado. In the Sources tab, under Design Sources, right-click the design
name and select Create HDL Wrapper. This action creates an HDL file named
design_name_wrapper.v in the design_name/hdl folder, where design_name is the name of the
Vivado project.

SystemVerilog Test Bench
HDL Verifier provides SystemVerilog tasks to interact with the design in a SystemVerilog simulation.
After you create a SystemVerilog wrapper, instantiate the wrapper in a SystemVerilog test bench. The
test bench also includes on-board IP models, such as memory models. Drive a clock and a reset signal
to your DUT. To include definitions specific to HDL Verifier, import the hdlverifier package to the
test bench by entering this code in the test bench file.

import hdlverifier::*;

To write data to memory locations or to read data from memory locations, use the writememory and
readmemory SystemVerilog tasks, respectively, as detailed in the next two sections. For an example
that uses AXI manager simulation, see “Access FPGA Memory Using JTAG-Based AXI Manager” on
page 8-15.

writememory(addr,wdata,burst_type) SystemVerilog Task
Write data to AXI4 memory-mapped subordinates in simulation.

• addr – Start address for write operation

The address is zero-extended to 32 or 64 bits, depending on the AXI manager IP address width.
The address must refer to an AXI subordinate memory location controlled by the AXI manager IP
on your FPGA board. For more information, see “Memory Mapping Guidelines” on page 4-3.

4 AXI Manager Simulation

4-2

• wdata – Data words to write

By default, the test bench writes data to a contiguous address block, incrementing the address for
each operation. To turn off address increment mode and write each data value to the same
location, set the burst_type parameter to HDLV_AXI_BURST_TYPE_FIXED.

• burst_type – AXI4 burst type

Specify HDLV_AXI_BURST_TYPE_INCR for increment mode, or HDLV_AXI_BURST_TYPE_FIXED
for fixed-burst mode.

In HDLV_AXI_BURST_TYPE_INCR mode, the AXI manager reads a vector of data from contiguous
memory locations, starting with the specified address. In HDLV_AXI_BURST_TYPE_FIXED mode,
the AXI manager reads all of the data from the same address.

readmemory(addr,length,burst_type) SystemVerilog Task
Read data out of AXI4 memory-mapped subordinates in simulation.

• addr – Start address for read operation

The address is zero-extended to 32 or 64 bits, depending on the AXI manager IP address width. By
default, the address width is set to 32 bits. To set the width to 64 bits, specify parameter
AXI_ADDR_WIDTH=64 in the HDL test bench. The address must refer to an AXI subordinate
memory location controlled by the AXI manager IP on your FPGA board. For more information, see
“Memory Mapping Guidelines” on page 4-3.

• length – Number of locations to read

Specify the number of memory locations to read. By default, the test bench reads from a
contiguous address block, incrementing the address for each operation. To turn off address
increment mode and read repeatedly from the same location, set the burst_type parameter to
HDLV_AXI_BURST_TYPE_FIXED.

• burst_type – AXI4 burst type

Specify HDLV_AXI_BURST_TYPE_INCR for increment mode, or HDLV_AXI_BURST_TYPE_FIXED
for fixed-burst mode.

In HDLV_AXI_BURST_TYPE_INCR mode, the AXI manager reads a vector of data from contiguous
memory locations, starting with the specified address. In HDLV_AXI_BURST_TYPE_FIXED mode,
the AXI manager reads all of the data from the same address.

Memory Mapping Guidelines
• If the AXI manager IP data width is 32 bits, the memory is 4 bytes aligned, and addresses have 4-

byte increments (0x0, 0x4, 0x8). In this case, 0x1 is an invalid address and you get an error.
• If the AXI manager IP data width is 64 bits, the memory is 8 bytes aligned, and addresses have 8-

byte increments (0x0, 0x8, 0x10). In this case, 0x1 or 0x4 are invalid addresses and will emit an
error.

• If the AXI manager IP data width is 32 bits and the Burst type parameter is set to Increment,
the address is incremented by 4 bytes.

• If the AXI manager IP data width is 64 bits and the Burst type parameter is set to Increment,
the address is incremented by 8 bytes.

 AXI Manager Simulation

4-3

• Do not use a 64-bit AXI manager for accessing 32-bit registers.

See Also

More About
• “Integrate AXI Manager IP in FPGA Design” on page 3-2
• “Access FPGA Memory Using JTAG-Based AXI Manager” on page 8-15

4 AXI Manager Simulation

4-4

AXI Manager Reference

5

aximanager
Read and write memory locations on FPGA board from MATLAB

Description
The aximanager object communicates with the AXI manager IP when it is running on an FPGA
board. The object forwards read and write commands to the IP to access subordinate memory
locations on the FPGA board. Before using this object, follow the steps in “Set Up AXI Manager” on
page 3-2.

Note The aximaster object has been renamed to the aximanager object. For more information,
see “Compatibility Considerations” on page 5-7.

Creation

Syntax
mem = aximanager(vendor)
mem = aximanager(vendor,Name,Value)

Description

mem = aximanager(vendor) returns an object, that controls an AXI4 manager IP for the FPGA
that is running on your board. vendor specifies the FPGA brand name. This connection enables you
to access memory locations in an SoC design from MATLAB.

mem = aximanager(vendor,Name,Value) sets properties using one or more name-value pair
arguments. Enclose each property name and value in quotes. For example,
'DeviceAddress','192.168.0.10' specifies the internet protocol (IP) address of the FPGA board
as 192.168.0.10.

Input Arguments

vendor — FPGA brand name
'Intel' | 'Xilinx'

FPGA brand name, specified as 'Intel' or 'Xilinx'. This value specifies the manufacturer of the FPGA
board. The AXI manager IP varies depending on the type of FPGA that you specify.

Properties
Interface — Type of interface used for communication with FPGA board
'JTAG' (default) | 'PCIe' | 'UDP'

Type of interface used for communication with the FPGA board, specified as 'JTAG' (default), 'PCIe',
or 'UDP'. This value specifies the interface type for communicating between the host and the FPGA.

5 AXI Manager Reference

5-2

JTAGCableType — Type of JTAG cable used for communication with FPGA board
'auto' (default) | 'FTDI'

Type of JTAG cable used for communication with the FPGA board (Xilinx boards only), specified as
'auto' (default) or 'FTDI'. This value specifies the type of JTAG cable used for communication with the
FPGA board. This property is most useful when more than one cable is connected to the host
computer.

When this property is set to 'auto' (default), the object autodetects the JTAG cable type. The object
prioritizes searching for Digilent cables and uses this process to autodetect the cable type.

1 The aximanager object searches for a Digilent cable. If the object finds:

• Exactly one Digilent cable, it uses that cable for communication with the FPGA board.
• More than one Digilent cable, it returns an error. To resolve this error, specify the desired

cable using JTAGCableName.
• No Digilent cables, it searches for an FTDI cable.

2 If no Digilent cable is found, the aximanager object then searches for an FTDI cable. If the
object finds:

• Exactly one FTDI cable, it uses that cable for communication with the FPGA board.
• More than one FTDI cable, it returns an error. To resolve this error, specify the desired cable

using JTAGCableName.
• No FTDI cables, it returns an error. To resolve this error, connect a Digilent or FTDI cable.

3 If the object finds two cables of different types, it prioritizes the Digilent cable. To use an FTDI
cable, set this property to 'FTDI'.

When this property is set to 'FTDI', the object searches for FTDI cables. If the object finds:

• Exactly one FTDI cable, it uses that cable for communication with the FPGA board.
• More than one FTDI cable, it returns an error. To resolve this error, specify the desired cable using

JTAGCableName.
• No FTDI cables, it returns an error. To resolve this error, connect a Digilent or FTDI cable.

For more details, see “Select from Multiple JTAG Cables” on page 5-6.

Dependencies

To enable this property, set the vendor input to 'Xilinx'.

JTAGCableName — Name of JTAG cable used for communication with FPGA board
'auto' (default) | character vector | string scalar

Name of the JTAG cable used for communication with the FPGA board, specified as a character vector
or string scalar representing a JTAG cable name. Specify this property if more than one JTAG cable of
the same type are connected to the host computer. If the host computer has more than one JTAG
cable and you do not specify this property, the object returns an error. The error message contains
the names of the available JTAG cables. For more details, see “Select from Multiple JTAG Cables” on
page 5-6.
Data Types: char | string

 aximanager

5-3

DeviceAddress — IP address of Ethernet port on FPGA board
'192.168.0.2' (default) | character vector | string scalar

Internet protocol (IP) address of the Ethernet port on the FPGA board, specified as a character vector
or string scalar representing an IP address.
Example: '192.168.0.10'

Dependencies

To enable this property, set the Interface to 'UDP'.
Data Types: char | string

DeviceType — Type of target device
'FPGA' (default) | 'SoC'

Type of target device, specified as, 'FPGA' (default) or 'SoC'. When you are using a Xilinx Zynq or an
Intel SoC as a target device, specify this property as 'SoC'.
Example: 'SoC'

Port — UDP port number of target FPGA board
'50101' (default) | integer

User datagram protocol (UDP) port number of the target FPGA board, specified as an integer.
Example: '12345'

Dependencies

To enable this property, set the Interface property to 'UDP' and the DeviceType property to 'FPGA'.
Data Types: uint16

TckFrequency — JTAG clock frequency
15 (default) | positive integer

Specify the JTAG clock frequency (Xilinx boards only), specified as a positive integer. Units are in
MHz. The JTAG frequency depends on the type of cable and the maximum clock frequency supported
by the FPGA board. Check the board documentation for maximum frequency.

Dependencies

To enable this property, set the vendor input to 'Xilinx'.

JTAGChainPosition — Position of FPGA in JTAG chain
0 (default) | nonnegative integer

Position of the FPGA in the JTAG chain (Xilinx boards only), specified as a nonnegative integer.
Specify this property value if more than one FPGA or Zynq device is on the JTAG chain.

Dependencies

To enable this property, set the vendor input to 'Xilinx'.

IRLengthBefore — Sum of instruction register length for all devices before target FPGA
0 (default) | nonnegative integer

5 AXI Manager Reference

5-4

Sum of instruction register length for all devices before target FPGA (Xilinx boards only), specified as
a nonnegative integer. Specify this property value if more than one FPGA or Zynq device is on the
JTAG chain.

Dependencies

To enable this property, set the vendor input to 'Xilinx'.

IRLengthAfter — Sum of instruction register length for all devices after target FPGA
0 (default) | nonnegative integer

Sum of instruction register length for all devices after target FPGA (Xilinx boards only), specified as a
nonnegative integer. Specify this property value if more than one FPGA or Zynq device is on the JTAG
chain.

Dependencies

To enable this property, set the vendor input to 'Xilinx'.

Object Functions
readmemory Read data out of AXI4 memory-mapped subordinates
release Release JTAG or Ethernet cable resource
writememory Write data to AXI4 memory-mapped subordinates

Examples

Access Memory on FPGA Board from MATLAB

This example shows how to read and write the memory locations on a Xilinx® FPGA board from
MATLAB®.

Before you can use this example, you must have a design running on an FPGA board connected to the
MATLAB host machine. The FPGA design must include an AXI manager IP that is customized for your
FPGA vendor. The support package installation includes this IP. To include the IP in your project, see
the “Access FPGA Memory Using JTAG-Based AXI Manager” on page 8-15 example.

Create an AXI manager object. The object connects MATLAB with the FPGA board and confirms that
the IP is present.

mem = aximanager('Xilinx')

mem =

 aximanager with properties:

 Vendor: 'Xilinx'
 JTAGCableName: 'auto'

Write 10 addresses and then read data from a single location. By default, these functions auto-
increment the address for each word of data.

writememory(mem,140,[10:19]);
rd_d = readmemory(mem,140,1)

rd_d =

 aximanager

5-5

 uint32

 10

Read data from 10 locations.

rd_d = readmemory(mem,140,10)

rd_d =

 1x10 uint32 row vector

 10 11 12 13 14 15 16 17 18 19

Read data 10 times from the same address by specifying that the AXI manager read all data from the
same address (disabling auto-incrementation).

rd_d = readmemory(mem,140,10,'BurstType','Fixed')

rd_d =

 1x10 uint32 row vector

 10 10 10 10 10 10 10 10 10 10

Write data 10 times to the same address. In this case, the final value stored in address 140 is 29.

writememory(mem,140,[20:29],'BurstType','Fixed');
rd_d = readmemory(mem,140,10)

rd_d =

 1x10 uint32 row vector

 29 11 12 13 14 15 16 17 18 19

Specify the address as a hexadecimal value. Specify for the function to cast the read data to a data
type other than uint32.

writememory(mem,0x1c,[0:4:64]);
rd_d = readmemory(mem,0x1c,16,'OutputDataType',numerictype(0,6,4))

rd_d =

 Columns 1 through 10
 0 0.2500 0.5000 0.7500 1.0000 1.2500 ...
 1.5000 1.7500 2.0000 2.2500
 Columns 11 through 16
 2.5000 2.7500 3.0000 3.2500 3.5000 3.7500

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 6
 FractionLength: 4

When you no longer need to access the board, release the JTAG connection.

release(mem);

5 AXI Manager Reference

5-6

Select from Multiple JTAG Cables

This example shows how to select the required JTAG cable from the multiple JTAG cables that are
connected to your host computer.

When multiple JTAG cables are connected to your host computer, the object prioritizes searching for
Digilent® cables over FTDI cables. To use an FTDI cable, specify the JTAG cable type.

h = aximanager('Xilinx','JTAGCableType','FTDI');

If two cables of the same type are connected to your host computer, specify the “JTAGCableName” on
page 5-0 property identifier for the board where the AXI manager IP is running. To see the JTAG
cable identifiers, attempt to create an aximanager object. The object returns a list of the current
JTAG cable names.

h = aximanager('Xilinx')

Error using fpgadebug_mex
Found more than one JTAG cable:
0 (JtagSmt1): #tpt_0001#ptc_0002#210203991642
1 (Arty): #tpt_0001#ptc_0002#210319789795
Please disconnect the extra cable, or specify the cable name as an
input argument. See documentation of FPGA Data Capture or AXI Manager
to learn how to set the cable name.

To communicate with the Arty board, specify the matching JTAG cable name.

h = aximanager('Xilinx','JTAGCableName','#tpt_0001#ptc_0002#210319789795');

Version History
Introduced in R2017a

R2022a: aximaster renamed to aximanager
Warns starting in R2022a

The aximaster object has been renamed to the aximanager object. In the software and
documentation, the terms "manager" and "subordinate" replace "master" and "slave," respectively.

To create an AXI manager object, use the aximanager object. Using the aximaster object is not
recommended and will be removed in a future release. If you use the aximaster object, the object
now gives this warning message.

aximaster has been renamed to aximanager in R2022a. aximaster will be removed
in a future release. Use aximanager instead.

See Also
Topics
“Access FPGA Memory Using JTAG-Based AXI Manager” on page 8-15
“Access DUT Registers on Xilinx Pure FPGA Board Using IP Core Generation Workflow” (HDL Coder)
“Set Up AXI Manager” on page 3-2

 aximanager

5-7

readmemory
Package: hdlverifier

Read data out of AXI4 memory-mapped subordinates

Syntax
data = readmemory(mem,addr,size)
data = readmemory(mem,addr,size,Name,Value)

Description
data = readmemory(mem,addr,size) reads size locations of data, starting from the address
specified in addr and then incrementing the address for each word. The function typecasts the data
to the uint32 or uint64 data type (depending on the data size of the AXI manager IP). The address,
addr, must refer to an AXI subordinate memory location controlled by the AXI manager IP on your
FPGA board. The aximanager object, mem, manages the connection between MATLAB and the AXI
manager IP.

data = readmemory(mem,addr,size,Name,Value) specifies options using one or more name-
value arguments.

Examples

Access Memory on FPGA Board from MATLAB

This example shows how to read and write the memory locations on a Xilinx® FPGA board from
MATLAB®.

Before you can use this example, you must have a design running on an FPGA board connected to the
MATLAB host machine. The FPGA design must include an AXI manager IP that is customized for your
FPGA vendor. The support package installation includes this IP. To include the IP in your project, see
the “Access FPGA Memory Using JTAG-Based AXI Manager” on page 8-15 example.

Create an AXI manager object. The object connects MATLAB with the FPGA board and confirms that
the IP is present.

mem = aximanager('Xilinx')

mem =

 aximanager with properties:

 Vendor: 'Xilinx'
 JTAGCableName: 'auto'

Write 10 addresses and then read data from a single location. By default, these functions auto-
increment the address for each word of data.

writememory(mem,140,[10:19]);
rd_d = readmemory(mem,140,1)

5 AXI Manager Reference

5-8

rd_d =

 uint32

 10

Read data from 10 locations.

rd_d = readmemory(mem,140,10)

rd_d =

 1x10 uint32 row vector

 10 11 12 13 14 15 16 17 18 19

Read data 10 times from the same address by specifying that the AXI manager read all data from the
same address (disabling auto-incrementation).

rd_d = readmemory(mem,140,10,'BurstType','Fixed')

rd_d =

 1x10 uint32 row vector

 10 10 10 10 10 10 10 10 10 10

Write data 10 times to the same address. In this case, the final value stored in address 140 is 29.

writememory(mem,140,[20:29],'BurstType','Fixed');
rd_d = readmemory(mem,140,10)

rd_d =

 1x10 uint32 row vector

 29 11 12 13 14 15 16 17 18 19

Specify the address as a hexadecimal value. Specify for the function to cast the read data to a data
type other than uint32.

writememory(mem,0x1c,[0:4:64]);
rd_d = readmemory(mem,0x1c,16,'OutputDataType',numerictype(0,6,4))

rd_d =

 Columns 1 through 10
 0 0.2500 0.5000 0.7500 1.0000 1.2500 ...
 1.5000 1.7500 2.0000 2.2500
 Columns 11 through 16
 2.5000 2.7500 3.0000 3.2500 3.5000 3.7500

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 6
 FractionLength: 4

When you no longer need to access the board, release the JTAG connection.

 readmemory

5-9

release(mem);

Input Arguments
mem — Connection to AXI manager IP on FPGA board
aximanager object

Connection to the AXI manager IP on your FPGA board, specified as an aximanager object.

addr — Starting address for read operation
nonnegative integer multiple of 4 | nonnegative hexadecimal value multiple of 4

Starting address for the read operation, specified as a nonnegative integer multiple of 4 or
hexadecimal value multiple of 4. The function supports the address width of 32, 40, and 64 bits. The
function casts the address to the uint32 or uint64 data type, depending on the AXI manager IP
address width. The address must refer to an AXI subordinate memory location controlled by the AXI
manager IP on your FPGA board.

Memory-Mapping Guidelines

• If the AXI manager IP data width is 32 bits, the memory is 4 bytes aligned, and addresses have 4-
byte increments (0x0, 0x4, 0x8). In this case, 0x1 is an illegal address and emits an error.

• If the AXI manager IP data width is 64 bits, the memory is 8 bytes aligned, and addresses have 8-
byte increments (0x0, 0x8, 0x10). In this case, 0x1 and 0x4 are illegal and emit errors.

• If the AXI manager IP data width is 32 bits and you set the 'BurstType' argument to
'Increment', the address has 4-byte increments.

• If the AXI manager IP data width is 64 bits and you set the 'BurstType' argument to
'Increment', the address has 8-byte increments.

• If the AXI manager IP data width is 32 bits and you set the OutputDataType argument to
'half', the function reads the lower 2 bytes and ignores the higher 2 bytes.

• If the AXI manager IP data width is 64 bits and you set the OutputDataType argument to
'half', the function reads the lower 2 bytes and ignores the higher 6 bytes.

• Do not use a 64-bit AXI manager for accessing 32-bit registers.

Example: 0xa4, specifies a starting address of 0xa4.
Data Types: uint32 | uint64

size — Number of memory locations to read
nonnegative integer

Number of memory locations to read, specified as a nonnegative integer. By default, the function
reads data from a contiguous address block, incrementing the address for each operation. To disable
address incrementation and read repeatedly from the same location, set the 'BurstType' argument
to 'Fixed'.

When you specify a large operation size, such as reading a block of DDR memory, the function
automatically breaks the operation into multiple bursts, using the maximum supported burst size of
256 words.
Example: 5 specifies five contiguous memory locations.

5 AXI Manager Reference

5-10

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'BurstType','Fixed' directs the AXI manager to read all data from the same address.

BurstType — AXI4 burst type
'Increment' (default) | 'Fixed'

AXI4 burst type, specified as one of these options:

• 'Increment' — The AXI manager reads a vector of data from contiguous memory locations,
starting with the specified address.

• 'Fixed' — The AXI manager reads all data from the same address.

Note The 'Fixed' burst type is not supported for the PCI Express interface. Use the 'Increment'
burst type instead.

OutputDataType — Data type assigned to read data
'uint32' (default) | 'uint8' | 'int8' | 'uint16' | 'int16' | 'half' | 'int32' | 'single' |
'uint64' | 'int64' | 'double' | numerictype object

Data type assigned to the read data, specified as one of these options:

• 'int8'
• 'uint8'
• 'uint16'
• 'int16'
• 'half'
• 'uint32'
• 'int32'
• 'single'
• 'uint64'
• 'int64'
• 'double'
• numerictype object

The function typecasts the data read out of the FPGA to the specified data type. double is supported
for 64-bit UDP connections only.

Output Arguments
data — Read data
scalar | vector

 readmemory

5-11

Read data, returned as a scalar or vector depending on the value you specify for the size. The
function typecasts the data to the data type specified by the 'OutputDataType' input.

Version History
Introduced in R2017a

R2023a: Support for half data type

The function reads half data from the memory locations on the FPGA board. The address for the
read operation must refer to an AXI subordinate memory location controlled by the AXI manager IP
on your FPGA board.

• If the AXI manager IP data width is 32 bits, the memory is 4 bytes aligned, and addresses have 4-
byte increments (0x0, 0x4, 0x8). In this case, the function reads the lower 2 bytes and ignores the
higher 2 bytes.

• If the AXI manager IP data width is 64 bits, the memory is 8 bytes aligned, and addresses have 8-
byte increments (0x0, 0x8, 0x10). In this case, the function reads the lower 2 bytes and ignores
the higher 6 bytes.

See Also
writememory | aximanager

5 AXI Manager Reference

5-12

release
Package: hdlverifier

Release JTAG or Ethernet cable resource

Syntax
release(mem)

Description
release(mem) releases the JTAG cable or Ethernet cable resource, depending on the interface that
you use.

• When you use a JTAG interface, the function releases the JTAG cable resource, freeing the cable
for use to reprogram the FPGA. After initialization, the AXI manager object, mem, holds the JTAG
cable resource, and other programs cannot access the JTAG cable. While you have an active AXI
manager object, FPGA programming over JTAG fails. Call the release function before
reprogramming the FPGA.

• When you use an Ethernet interface, the function closes the Ethernet communications channel
and clears the associated resources. During the creation of AXI manager object mem, the object
initializes a communication stream to enable the exchange of data between the host computer and
the target processor. Call the release function when you no longer need to access the board.

Examples

Access Memory on FPGA Board from MATLAB

This example shows how to read and write the memory locations on a Xilinx® FPGA board from
MATLAB®.

Before you can use this example, you must have a design running on an FPGA board connected to the
MATLAB host machine. The FPGA design must include an AXI manager IP that is customized for your
FPGA vendor. The support package installation includes this IP. To include the IP in your project, see
the “Access FPGA Memory Using JTAG-Based AXI Manager” on page 8-15 example.

Create an AXI manager object. The object connects MATLAB with the FPGA board and confirms that
the IP is present.

mem = aximanager('Xilinx')

mem =

 aximanager with properties:

 Vendor: 'Xilinx'
 JTAGCableName: 'auto'

Write 10 addresses and then read data from a single location. By default, these functions auto-
increment the address for each word of data.

 release

5-13

writememory(mem,140,[10:19]);
rd_d = readmemory(mem,140,1)

rd_d =

 uint32

 10

Read data from 10 locations.

rd_d = readmemory(mem,140,10)

rd_d =

 1x10 uint32 row vector

 10 11 12 13 14 15 16 17 18 19

Read data 10 times from the same address by specifying that the AXI manager read all data from the
same address (disabling auto-incrementation).

rd_d = readmemory(mem,140,10,'BurstType','Fixed')

rd_d =

 1x10 uint32 row vector

 10 10 10 10 10 10 10 10 10 10

Write data 10 times to the same address. In this case, the final value stored in address 140 is 29.

writememory(mem,140,[20:29],'BurstType','Fixed');
rd_d = readmemory(mem,140,10)

rd_d =

 1x10 uint32 row vector

 29 11 12 13 14 15 16 17 18 19

Specify the address as a hexadecimal value. Specify for the function to cast the read data to a data
type other than uint32.

writememory(mem,0x1c,[0:4:64]);
rd_d = readmemory(mem,0x1c,16,'OutputDataType',numerictype(0,6,4))

rd_d =

 Columns 1 through 10
 0 0.2500 0.5000 0.7500 1.0000 1.2500 ...
 1.5000 1.7500 2.0000 2.2500
 Columns 11 through 16
 2.5000 2.7500 3.0000 3.2500 3.5000 3.7500

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 6
 FractionLength: 4

When you no longer need to access the board, release the JTAG connection.

5 AXI Manager Reference

5-14

release(mem);

Input Arguments
mem — Connection to JTAG-based AXI manager IP or to Ethernet-based AXI manager IP
aximanager object

Connection to a JTAG-based AXI manager IP or to an Ethernet-based AXI manager IP, specified as an
aximanager object.

Version History
Introduced in R2017a

See Also
readmemory | writememory

 release

5-15

writememory
Package: hdlverifier

Write data to AXI4 memory-mapped subordinates

Syntax
writememory(mem,addr,data)
writememory(mem,addr,data,Name,Value)

Description
writememory(mem,addr,data) writes all words specified in data, starting from the address
specified in addr and then incrementing the address for each word. The address, addr, must refer to
an AXI subordinate memory location controlled by the AXI manager IP on your FPGA board. The AXI
manager object, mem, manages the connection between MATLAB and the AXI manager IP.

writememory(mem,addr,data,Name,Value) specifies options using one or more name-value
arguments.

Examples

Access Memory on FPGA Board from MATLAB

This example shows how to read and write the memory locations on a Xilinx® FPGA board from
MATLAB®.

Before you can use this example, you must have a design running on an FPGA board connected to the
MATLAB host machine. The FPGA design must include an AXI manager IP that is customized for your
FPGA vendor. The support package installation includes this IP. To include the IP in your project, see
the “Access FPGA Memory Using JTAG-Based AXI Manager” on page 8-15 example.

Create an AXI manager object. The object connects MATLAB with the FPGA board and confirms that
the IP is present.

mem = aximanager('Xilinx')

mem =

 aximanager with properties:

 Vendor: 'Xilinx'
 JTAGCableName: 'auto'

Write 10 addresses and then read data from a single location. By default, these functions auto-
increment the address for each word of data.

writememory(mem,140,[10:19]);
rd_d = readmemory(mem,140,1)

rd_d =

5 AXI Manager Reference

5-16

 uint32

 10

Read data from 10 locations.

rd_d = readmemory(mem,140,10)

rd_d =

 1x10 uint32 row vector

 10 11 12 13 14 15 16 17 18 19

Read data 10 times from the same address by specifying that the AXI manager read all data from the
same address (disabling auto-incrementation).

rd_d = readmemory(mem,140,10,'BurstType','Fixed')

rd_d =

 1x10 uint32 row vector

 10 10 10 10 10 10 10 10 10 10

Write data 10 times to the same address. In this case, the final value stored in address 140 is 29.

writememory(mem,140,[20:29],'BurstType','Fixed');
rd_d = readmemory(mem,140,10)

rd_d =

 1x10 uint32 row vector

 29 11 12 13 14 15 16 17 18 19

Specify the address as a hexadecimal value. Specify for the function to cast the read data to a data
type other than uint32.

writememory(mem,0x1c,[0:4:64]);
rd_d = readmemory(mem,0x1c,16,'OutputDataType',numerictype(0,6,4))

rd_d =

 Columns 1 through 10
 0 0.2500 0.5000 0.7500 1.0000 1.2500 ...
 1.5000 1.7500 2.0000 2.2500
 Columns 11 through 16
 2.5000 2.7500 3.0000 3.2500 3.5000 3.7500

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 6
 FractionLength: 4

When you no longer need to access the board, release the JTAG connection.

 writememory

5-17

release(mem);

Input Arguments
mem — Connection to AXI manager IP on FPGA board
aximanager object

Connection to the AXI manager IP on your FPGA board, specified as an aximanager object.

addr — Starting address for write operation
nonnegative integer multiple of 4 | nonnegative hexadecimal value multiple of 4

Starting address for the write operation, specified as a nonnegative integer multiple of 4 or
hexadecimal value multiple of 4. The function supports the address width of 32, 40, and 64 bits. The
function casts the address to the uint32 or uint64 data type, according to the AXI manager IP
address width. The address must refer to an AXI subordinate memory location controlled by the AXI
manager IP on your FPGA board.

Memory-Mapping Guidelines

• If the AXI manager IP data width is 32 bits, the memory is 4 bytes aligned, and addresses have 4-
byte increments (0x0, 0x4, 0x8). In this case, 0x1 is an illegal address and emits an error.

• If the AXI manager IP data width is 64 bits, the memory is 8 bytes aligned, and addresses have 8-
byte increments (0x0, 0x8, 0x10). In this case, 0x1 and 0x4 are illegal and emit errors.

• If the AXI manager IP data width is 32 bits and you set the 'BurstType' argument to
'Increment', the address has 4-byte increments.

• If the AXI manager IP data width is 64 bits and you set the 'BurstType' argument to
'Increment', the address has 8-byte increments.

• If the AXI manager IP data width is 32 bits and the input data is half, the function writes data to
the lower 2 bytes and pads the higher 2 bytes with zeros.

• If the AXI manager IP data width is 64 bits and the input data is half, the function writes data to
the lower 2 bytes and pads the higher 6 bytes with zeros.

• Do not use a 64-bit AXI manager for accessing 32-bit registers.

Example: 64, specifies a starting address of 64.
Data Types: uint32 | uint64

data — Data words to write
scalar | vector

Data words to write, specified as a scalar or vector. By default, the function writes the data to a
contiguous address block, incrementing the address for each operation. To disable address
incrementation and write each data value to the same location, set the 'BurstType' argument to
'Fixed'.

Before sending the write request to the FPGA, the function typecasts the input data to the uint32,
int32, uint64, or int64 data type. The type conversion follows these rules:

• If the input data is double, then the data is typecast to int32 or int64, depending on the AXI
manager IP data width.

5 AXI Manager Reference

5-18

• If the input data is single, then the data is typecast to uint32 or uint64, depending on the AXI
manager IP data width.

• If the input data is half, then the data is typecast to uint16 and packed to uint32 or uint64,
depending on the AXI manager IP data width.

• If the bit width of the input data type is less than the AXI manager IP data width, then the data is
sign-extended to the width of the AXI manager IP data width.

• If the bit width of the input data type is greater than the AXI manager IP data width, then the data
is typecast to int32, uint32, int64, uint64. The data is typecast to match the AXI manager IP
data width and the signedness of the original data type.

• If the input data is a fixed-point data type, then the function writes the stored integer value of the
data.

When you specify a large operation size, such as writing a block of DDR memory, the function
automatically breaks the operation into multiple bursts, using the maximum supported burst size of
256 words.
Example: [1:100] specifies 100 contiguous memory locations.
Data Types: uint8 | int8 | uint16 | int16 | half | uint32 | int32 | single | uint64 | int64 |
double | fi

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'BurstType','Fixed' directs the AXI manager to write all data to the same address.

BurstType — AXI4 burst type
'Increment' (default) | 'Fixed'

AXI4 burst type, specified as one of these options:

• 'Increment' — The AXI manager writes a vector of data to contiguous memory spaces, starting
with the specified address.

• 'Fixed' — The AXI manager writes all data to the same address.

Note The 'Fixed' burst type is not supported for the PCI Express interface. Use the 'Increment'
burst type instead.

Version History
Introduced in R2017a

R2023a: Support for half data type

The function writes half data to the memory locations on the FPGA board. Before sending the write
request to the FPGA, the function typecasts the half input data to the uint16 and then packs the
data to uint32 or uint64, depending on the AXI manager IP data width.

 writememory

5-19

The address for the write operation must refer to an AXI subordinate memory location controlled by
the AXI manager IP on your FPGA board.

• If the AXI manager IP data width is 32 bits, the memory is 4 bytes aligned, and addresses have 4-
byte increments (0x0, 0x4, 0x8). In this case, the function writes data to the lower 2 bytes and
pads the higher 2 bytes with zeros.

• If the AXI manager IP data width is 64 bits, the memory is 8 bytes aligned, and addresses have 8-
byte increments (0x0, 0x8, 0x10). In this case, the function writes data to the lower 2 bytes and
pads the higher 6 bytes with zeros.

See Also
readmemory | aximanager

5 AXI Manager Reference

5-20

setupAXIManagerForVivado
Add AXI manager IP path to Vivado project

Syntax
setupAXIManagerForVivado(projectName)
setupAXIManagerForVivado

Description
setupAXIManagerForVivado(projectName) adds the AXI manager IP folder to the path of the
Vivado project, projectName.

Note The setupAXIMasterForVivado function has been renamed to the
setupAXIManagerForVivado function. For more information, see “Compatibility Considerations”
on page 5-22.

setupAXIManagerForVivado displays the location of the AXI manager IP that is included with this
support package.

Examples

Add AXI Manager IP to FPGA Project

Call the setup function with a project file name. If the project is not in the current working folder,
include the path.

setupAXIManagerForVivado('arty.xpr')

The location of the AXI manager IP is added to your project IP search path.

Find Location of AXI Manager IP

To find the folder in your MATLAB® installation that contains the AXI manager IP, call the setup
function without a project file name.

setupAXIManagerForVivado

The Vivado project was not specified. You can manually add ...
C:\Program Files\MATLAB\R2022a\toolbox\hdlverifier\supportpackages ...
\fpgadebug_xilinx\+hdlverifier\+fpga\+vivado ...
to the IP search path setting of your Vivado project.

 setupAXIManagerForVivado

5-21

To use the IP, add this path to your FPGA project.

Input Arguments
projectName — File name of Vivado project
character vector

File name of an existing Vivado project. This function modifies the project to add the location of the
AXI manager IP to the IP search path. If you do not specify this argument, the function displays the
path to the AXI manager IP.

Version History
Introduced in R2017a

R2022a: setupAXIMasterForVivado renamed to setupAXIManagerForVivado
Warns starting in R2022a

The setupAXIMasterForVivado function has been renamed to the setupAXIManagerForVivado
function. In the software and documentation, the terms "manager" and "subordinate" replace
"master" and "slave," respectively.

To display the path to the AXI manager IP, use the setupAXIManagerForVivado function. Using the
setupAXIMasterForVivado function is not recommended and will be removed in a future release.
If you use the setupAXIMasterForVivado function, the function now gives this warning message.

setupAXIMasterForVivado has been renamed to setupAXIManagerForVivado in
R2022a. setupAXIMasterForVivado will be removed in a future release. Use
setupAXIManagerForVivado instead.

See Also
Classes
aximanager

Topics
“Access FPGA Memory Using JTAG-Based AXI Manager” on page 8-15
“Set Up AXI Manager” on page 3-2

5 AXI Manager Reference

5-22

loadImageToTargetSDCardPath
Load board-specific SD card image files to target SoC device SD card location

Syntax
loadImageToTargetSDCardPath(BoardName)
loadImageToTargetSDCardPath(BoardName,Name,Value)

Description
loadImageToTargetSDCardPath(BoardName) loads the SD card image files of the specified board
to the specified SD card drive location on the target SoC device with default IP address by using
Ethernet. The SD card image files contain a bootloader and the suitable operating system
information.

loadImageToTargetSDCardPath(BoardName,Name,Value) specifies options using one or more
name-value arguments. For example, 'Gateway','192.168.0.4' sets the gateway for the network
interface.

Input Arguments
BoardName — Targeted SoC board name
'ZC702' | 'ZC706' | 'ZedBoard' | 'ZCU102' | 'ZCU111' | 'ZCU216'

Targeted SoC board name, specified as one of these values.

• 'ZC702' — Xilinx Zynq-7000 ZC702
• 'ZC706' — Xilinx Zynq-7000 ZC706
• 'ZedBoard' — Xilinx Zynq ZedBoard
• 'ZCU102' — Xilinx Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit
• 'ZCU111' — Xilinx Zynq UltraScale+ RFSoC ZCU111 Evaluation Kit
• 'ZCU216' — Xilinx Zynq UltraScale+ RFSoC ZCU216 Evaluation Kit

Data Types: char | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example:
loadImageToTargetSDCardPath('ZC706','DeviceAddress','192.168.10.2','Gateway',
'192.168.10.1');

DeviceAddress — IP address of target SoC device SD card location
'192.168.0.2' (default) | character vector | string scalar

 loadImageToTargetSDCardPath

5-23

Internet protocol (IP) address of the target SoC device, specified as a character vector or string
scalar. The target IP address must be a set of four numbers consisting of integers in the range [0,
255] that are separated by dots.

Use this name-value argument to specify a nondefault address when you use the
copyImageToHostSDCardPath function.
Example: '192.168.0.8'
Data Types: char | string

Gateway — Gateway for network interface
'192.168.0.1' (default) | character vector | string scalar

Gateway for the network interface, specified as a character vector or string scalar. The gateway must
be a set of four numbers consisting of integers in the range [0, 255] that are separated by dots.
Example: '192.168.0.4'
Data Types: char | string

SDCardImage — SD card image to copy
character vector | string scalar

SD card image to copy, specified as a character vector or string scalar. Use this name-value argument
to copy a custom SD card image.

The default SD card image is the SD card files that come with the HDL Verifier support package.
Example: 'C:\mywork\hdlv_prj\sdcard_image\zc706_sdcard_zynq7000'
Data Types: char | string

Username — Username to log into target Linux operating system
'root' (default) | character vector | string scalar

Username to log into the target Linux operating system, specified as a character vector or string
scalar. Use this name-value argument to specify a nondefault user account name.
Example: 'root'
Data Types: char | string

Password — Secret password associated with specified username
'root' (default) | character vector | string scalar

Secret password associated with the specified username, specified as a character vector or string
scalar. Use this name-value argument to configure a nondefault user account password.
Example: 'root'
Data Types: char | string

Version History
Introduced in R2020a

5 AXI Manager Reference

5-24

See Also
copyImageToHostSDCardPath | loadBitstream

Topics
“Ethernet AXI Manager for Xilinx Zynq SoC Devices” on page 3-16

 loadImageToTargetSDCardPath

5-25

copyImageToHostSDCardPath
Copy board-specific SD card image files to host SD card location

Syntax
copyImageToHostSDCardPath(BoardName,SDCardDrive)
copyImageToHostSDCardPath(BoardName,SDCardDrive,Name,Value)

Description
copyImageToHostSDCardPath(BoardName,SDCardDrive) copies the SD card image files of the
specified board to the specified SD card drive location on the host system. The SD card image files
contain a bootloader and the suitable operating system information. Also, this function copies the
server daemon for handling the AXI manager host commands on the target SoC device.

copyImageToHostSDCardPath(BoardName,SDCardDrive,Name,Value) specifies options using
one or more name-value arguments. For example, 'DeviceAddress','192.168.0.8' sets the
internet protocol (IP) address of the target SoC device.

Input Arguments
BoardName — Targeted SoC board name
'VCK190''ZC702' | 'ZC706' | 'ZedBoard' | 'ZCU102' | 'ZCU111' | 'ZCU216'

Targeted SoC board name, specified as one of these values.

• 'VCK190' — Xilinx Versal AI Core Series VCK190 Evaluation Kit
• 'ZC702' — Xilinx Zynq-7000 ZC702
• 'ZC706' — Xilinx Zynq-7000 ZC706
• 'ZedBoard' — Xilinx Zynq ZedBoard
• 'ZCU102' — Xilinx Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit
• 'ZCU111' — Xilinx Zynq UltraScale+ RFSoC ZCU111 Evaluation Kit
• 'ZCU216' — Xilinx Zynq UltraScale+ RFSoC ZCU216 Evaluation Kit

Data Types: char | string

SDCardDrive — Name of SD card drive location
character vector | string scalar

Name of SD card drive location on the host computer, specified as a character vector or string scalar.
Example: 'G:' for Windows operating system
Example: '/media/username/261D-2F2B' for Linux operating system
Data Types: char | string

5 AXI Manager Reference

5-26

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: copyImageToHostSDCardPath('ZC706','G:','SDCardImage','C:\mywork
\hdlv_prj\sdcard_image\zc706_sdcard_zynq7000');

DeviceAddress — IP address of target SoC device
'192.168.0.2' (default) | character vector | string scalar

IP address of the target SoC device, specified as a character vector or string scalar. The target IP
address must be a set of four numbers consisting of integers in the range [0, 255] that are separated
by dots.
Example: '192.168.0.8'.

The host network interface card (NIC) address must be on the same subnet as the target SoC device.
Example: For example, if you specify this value as '192.168.0.8' the host NIC address can be
192.168.0.x. The variable x is any integer in the range [1, 7] and [9, 255].
Data Types: char | string

Gateway — Gateway for network interface
'192.168.0.1' (default) | character vector | string scalar

Gateway for the network interface, as a character vector or string scalar. The gateway must be a set
of four numbers consisting of integers in the range from [0, 255] that are separated by dots.
Example: '192.168.0.4'
Data Types: char | string

SDCardImage — SD card image to copy
character vector | string scalar

SD card image to copy, specified as a character vector or string scalar. Use this name-value pair
argument to copy a custom SD card image.

The default SD card image is the SD card files that come with the HDL Verifier support package.
Example: 'C:\mywork\hdlv_prj\sdcard_image\zc706_sdcard_zynq7000'
Data Types: char | string

Version History
Introduced in R2020a

See Also
loadImageToTargetSDCardPath | loadBitstream

 copyImageToHostSDCardPath

5-27

Topics
“Ethernet AXI Manager for Xilinx Zynq SoC Devices” on page 3-16
“Guided Hardware Setup”

5 AXI Manager Reference

5-28

loadBitstream
Load custom FPGA bitstream and corresponding DTB file to target SoC device

Syntax
loadBitstream(BoardName,FPGAImage,DeviceTree)
loadBitstream(BoardName,FPGAImage,DeviceTree,Name,Value)

Description
loadBitstream(BoardName,FPGAImage,DeviceTree) loads the custom FPGA bitstream and
corresponding device tree blob (DTB) file of the specified board to the targeted SoC device by using
an Ethernet connection.

loadBitstream(BoardName,FPGAImage,DeviceTree,Name,Value) specifies options using one
or more name-value arguments. For example, 'DeviceAddress','192.168.0.8' sets the internet
protocol (IP) address of the target SoC device.

Input Arguments
BoardName — Targeted SoC board name
'ZC702' | 'ZC706' | 'ZedBoard' | 'ZCU102' | 'ZCU111' | 'ZCU216'

Targeted SoC board name, specified as one of these values.

• 'ZC702' — Xilinx Zynq-7000 ZC702
• 'ZC706' — Xilinx Zynq-7000 ZC706
• 'ZedBoard' — Xilinx Zynq ZedBoard
• 'ZCU102' — Xilinx Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit
• 'ZCU111' — Xilinx Zynq UltraScale+ RFSoC ZCU111 Evaluation Kit
• 'ZCU216' — Xilinx Zynq UltraScale+ RFSoC ZCU216 Evaluation Kit

Data Types: char | string

FPGAImage — Custom FPGA bitstream file
character vector | string scalar

Custom FPGA bitstream file to be loaded onto the target board, specified as a character vector or
string scalar.
Example: 'C:\mywork\hdlv_bitstreams\system.bit'
Data Types: char | string

DeviceTree — Custom DTB file
character vector | string scalar

Custom DTB file to load onto the target board, specified as a character vector or string scalar.
Example: 'C:\mywork\hdlv_bitstreams\devicetree.dtb'

 loadBitstream

5-29

You can also provide only the DTB file name if the file is located on the target SD card path.
Example: 'devicetree_axilite.dtb'
Data Types: char | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: loadBitstream('ZC706','C:\mywork\hdlv_bitstreams
\system.bit','C:\mywork\hdlv_bitstreams
\devicetree.dtb','DeviceAddress','192.168.10.2');

DeviceAddress — IP address of target SoC device
'192.168.0.2' (default) | character vector | string scalar

IP address of the target SoC device, specified as a character vector or string scalar. The target IP
address must be a set of four numbers consisting of integers in the range [0, 255] that are separated
by dots.

Use this name-value argument to specify a nondefault address when you use the
copyImageToHostSDCardPath function.
Example: '192.168.0.8'
Data Types: char | string

Username — Username to log into target Linux operating system
'root' (default) | character vector | string scalar

Username to log into the target Linux operating system, specified as a character vector or string
scalar. Use this name-value argument to specify a nondefault user account name.
Example: 'root'
Data Types: char | string

Password — Secret password associated with specified username
'root' (default) | character vector | string scalar

Secret password associated with the specified username, specified as a character vector or string
scalar. Use this name-value argument to specify a nondefault user account password.
Example: 'root'
Data Types: char | string

Version History
Introduced in R2020a

See Also
loadImageToTargetSDCardPath | copyImageToHostSDCardPath

5 AXI Manager Reference

5-30

Topics
“Ethernet AXI Manager for Xilinx Zynq SoC Devices” on page 3-16

 loadBitstream

5-31

FPGA Data Capture

• “Data Capture Workflow” on page 6-2
• “Triggers” on page 6-7
• “Design Considerations for Data Capture” on page 6-11
• “Capture Conditions” on page 6-13

6

Data Capture Workflow

Use FPGA data capture to observe signals from your design while the design is running on the FPGA.
This feature captures a window of signal data from the FPGA and returns the data to MATLAB or
Simulink.

There are two workflows to capture data from your FPGA board into MATLAB or Simulink:

• First workflow — When you generate the HDL IP with HDL Coder, use the HDL Workflow
Advisor tool to generate the data capture IP and integrate it in the design.

• Second workflow — If you have an existing HDL design, HDL Verifier provides tools to generate
the data capture IP. Then, manually integrate the generated IP into your FPGA design.

To capture signals from your design, HDL Verifier generates an IP core that communicates with
MATLAB. Use the HDL Coder workflow for automatic integration of the data capture IP core in your
design. Otherwise, manually integrate this IP core into your HDL project and deploy it to the FPGA
along with the rest of your design. Then, use one of the following methods to capture data.

• For capturing data to MATLAB – HDL Verifier generates a customized tool that returns the
captured signal data. Alternatively, you can use the generated System object to capture data
programmatically.

• For capturing data to Simulink – HDL Verifier generates a block that has output ports
corresponding to the signals you captured.

6 FPGA Data Capture

6-2

In both cases, you can specify data types for the captured data, number of windows to capture,
trigger condition that controls when to capture the data, and capture condition that controls which
data to capture.

When the design is running on the FPGA, first the generated IP core waits for the trigger condition
that you specify. Define a trigger condition by specific values matched on one or more signals. When
the trigger is detected, the logic captures the designated signals to a buffer and returns the data over
the JTAG or Ethernet interface to the host machine. You can then analyze and display these signals in
your MATLAB workspace or Simulink model.

To make the best use of the buffer size and capture only the valid data, you can also define a capture
condition. Define a capture condition in the same way as you define the trigger condition. When both
the trigger is detected and the capture condition is satisfied, the logic captures only the valid values
of the designated signals.

Generate and Integrate Data Capture IP Using HDL Workflow Advisor
When you use the HDL Workflow Advisor tool to generate your HDL design, first mark interesting
signals as test points in Simulink.

Note FPGA data capture does not support Xilinx Versal devices in the HDL Workflow Advisor tool.
To capture data from a Versal device, use the existing HDL design workflow.

Configure your design using the HDL Workflow Advisor tool to:

• Select the type of connection channel by setting the FPGA Data Capture (HDL Verifier
required) parameter in the Set Target Reference Design task. For more information, see “Set
Target Reference Design” (HDL Coder).

• Enable test point generation by selecting the Enable HDL DUT port generation for test points
parameter in the Set Target Interface task. For more information, see “Set Target Interface”
(HDL Coder).

• Connect test point signals to the FPGA Data Capture interface in the Set Target Interface
task.

• Set up buffer size and maximum sequence depth for data collection in the Generate RTL Code
and IP Core task. To include capture condition logic in the IP core, select Include capture
condition logic in FPGA Data Capture. For more information, see “Generate RTL Code and IP
Core” (HDL Coder).

Then, run through the remaining steps to generate HDL for your design and program the FPGA. The
data capture IP core is integrated in the generated design. You are now ready to “Capture Data” on
page 6-5.

Configure and Generate IP Core for an Existing HDL Design
Before you can capture FPGA data, first specify which signals to capture, and how many samples to
return. Use the FPGA Data Capture Component Generator to configure these and other settings,
and to generate the HDL IP core. The IP core contains:

• A port for each signal you want to capture or use as part of a trigger condition

 Data Capture Workflow

6-3

• Memory to capture the number of samples you requested for each signal
• JTAG or Ethernet interface logic to communicate with MATLAB
• Trigger and capture condition logic that can be configured at run time
• A ready-to-capture signal to control data flow from the FPGA

The tool also generates a customized FPGA Data Capture tool, System object, and model that
communicate with the FPGA.

Integrate IP into FPGA
For MATLAB to communicate with the FPGA, you must integrate the generated HDL IP core into your
FPGA design. If you used the HDL Workflow Advisor tool to generate your data capture IP, this step
is automated. In this case, data capture IP operates on a single-clock rate, which is the primary clock
of your device under test (DUT). If you did not use the HDL Workflow Advisor tool, follow the
instructions in the generation report based on your device family.

Non-Versal Devices

Follow these instructions to integrate the datacapture HDL IP core into your FPGA design that
targets a Xilinx non-Versal device.

1 Create a Vivado project.
2 Navigate to the hdlsrc folder.
3 Follow one of these steps based on your connection type.

6 FPGA Data Capture

6-4

• JTAG — Add the generated HDL files in the hdlsrc folder to your Vivado project. Then,
instantiate the HDL IP core, datacapture, in your HDL code. Connect datacapture to the
signals you requested for capture and triggers.

• Ethernet — Run the insertEthernet script by executing this command in the Vivado Tcl
console.

source ./insertEthernet.tcl

Versal Devices

Follow these instructions to integrate the datacapture HDL IP core into your FPGA design targeted
on a Xilinx Versal device.

Note FPGA data capture support for Versal devices is available for JTAG connections only.

1 Open your block design in Vivado.
2 Navigate to the hdlsrc folder.
3 Insert the datacapture IP into your block design and connect the IP to the BSCAN_USER2

interface of the Xilinx Versal platform CIPS IP by executing this command in the Vivado Tcl
console.

source ./insertVersalFPGADataCaptureIP.tcl

To enable the BSCAN_USER2 interface, enable the PL BSCAN1 interface in the CIPS IP.
4 Complete the block design by connecting the clk, clk_enable, and input data ports of the data

capture IP.

Compile the project and program the FPGA with the new image through a JTAG cable.

Capture Data
The FPGA data capture IP core communicates over the JTAG or Ethernet cable between your FPGA
board and the host computer. Make sure that the required cable is connected. Before capturing data,
you can set data types for the captured data, set trigger condition that specifies when to capture the
data, and set a capture condition that specifies the data to be captured. To configure these options
and capture data, you can:

• Open the FPGA Data Capture tool. Set the trigger, capture condition, and data type parameters,
and then capture data into the MATLAB workspace.

 Data Capture Workflow

6-5

• Use the generated System object derived from hdlverifier.FPGADataReader. Set the data
types, trigger condition, and capture condition using the methods and properties of the System
object, and then call the object to capture data.

• In Simulink, open the generated model and configure the parameters of the FPGA Data Reader
block. Then run the model to capture data.

After you capture the data and import it into the MATLAB workspace or Simulink model, you can
analyze, verify, and display the data.

See Also
FPGA Data Capture Component Generator | FPGA Data Capture |
hdlverifier.FPGADataReader | FPGA Data Reader

Related Examples
• “Capture Temperature Sensor Data from Xilinx FPGA Board Using FPGA Data Capture” on page

8-2
• “Debug IP Core Using FPGA Data Capture” (HDL Coder)

6 FPGA Data Capture

6-6

Triggers

What Is a Trigger Condition?
A trigger condition is a logical statement that defines when to capture data from the FPGA. Use a
trigger condition to capture data around an event of interest on the FPGA. Capture multiple
occurrences of an event by setting Number of capture windows to the desired value. A trigger
condition is composed of value comparison tests on one or more FPGA signals. For example:

counter == 100

All trigger comparisons are synchronous. When you specify an edge condition for a Boolean signal,
the IP core compares the current sampled value with the sampled value from the previous clock
cycle.

fifo_full == 'Rising edge'

The trigger condition is met when all terms of the condition are true on the same clock cycle. You can
use only a single value comparison per signal.

receiver_state == 3 OR message_detected == 'High'

fifo_cnt == 0 AND fifo_pop == 'High'

You can use only a single type of logical operator in the trigger condition. You cannot mix AND and OR
conditions.

fifo_empty == 'Rising edge' OR fifo_full == 'Rising edge' OR memctrl_state == 2

receiver_state == 3 AND message_addr == 148 AND pkt_type == 5

You can use multiple comparison operators in the trigger condition.

fifo_empty == 'Rising edge' OR fifo_full != 'LOW' OR memctrl_state == 2

receiver_state == 3 AND message_addr > 148 AND pkt_type >= 5

You can use X or x (don't-care value) in the trigger condition. While comparing, the trigger condition
ignores the place values with X. When the trigger condition is 0b1X1, the possible trigger condition
values are 0b101 or 0b111.

receiver_state == 3 AND message_addr == 148 AND pkt_type == 0b1X1

Sequential Trigger
A sequential trigger enables you to give a set of trigger conditions in multiple stages to capture
specified data from an FPGA. With a sequential trigger, you can read data to MATLAB or Simulink
only after all of the specified trigger conditions happen in sequence. For multiple trigger stages, set
the Max trigger stages parameter of the FPGA Data Capture Component Generator tool to a
value greater than 1. Max trigger stages sets the maximum number of trigger stages for providing
trigger conditions. For example, if Max trigger stages is 3, the Trigger tab in the FPGA Data
Capture tool or in the FPGA Data Reader block can have maximum of 3 trigger stages.

 Triggers

6-7

Define a trigger condition by specific values matched on one or more signals in each stage. For
example, if the number of trigger stages is 3 and 10 signals exist, you can set these trigger
conditions.

• Trigger condition for stage 1:

((signal1 > 10) and (signal3 == true) and (signal7 < 5));
• Trigger condition for stage 2:

((signal1 == 0b0110) or (signal4 == 0XXX) or (signal8 < 5));
• Trigger condition for stage 3:

((signal2 != 5) and (signal6 == true) and (signal8 == 8));

Configure a Trigger Condition
At generation time, specify which signals you want to be available for use in trigger conditions. A
signal can be a trigger without capturing data, or it can be both a trigger and a captured signal. You
can modify the trigger condition at capture time, using any signals you specified as triggers. The data
capture IP core on the FPGA receives the trigger definition from MATLAB and configures on-chip
muxes to detect the event.

When you use the FPGA Data Capture tool, or the FPGA Data Reader block, set the trigger
condition on the Trigger tab. Each line in the table is the value comparison for one signal. To

6 FPGA Data Capture

6-8

combine the signal values, use the trigger combination operator. To show a signal on this tab, you
must specify the signal as a trigger at generation time.

For an hdlverifier.FPGADataReader System object, configure the trigger condition using the
setTriggerCondition, setTriggerComparisonOperator, and
setTriggerCombinationOperator object functions. To check your configuration, call the
displayTriggerCondition object function.

If you do not enable a trigger condition on any signal, the data capture IP core captures data
immediately.

Trigger Position
You can change the relative position of the trigger detection cycle within the capture buffer. Use this
feature to capture the relevant data, whether it is before or after the trigger event.

Suppose you want to debug the rates of pushes and pops to a FIFO design. You can set a trigger on a
High value of the signals fifo_empty or fifo_full.

By default, the clock cycle when the trigger is detected is the first sample of the capture buffer. The
IP core captures a buffer starting from the cycle when fifo_full changes to high.

 Triggers

6-9

To debug the fifo_full condition, observe the signals before the trigger condition occurs. In the
capture settings, change the Trigger position to 3/4 of the window depth using the tic mark on the
slider. For example, if Sample depth is 128, Number of capture windows is 1, and Number of
trigger stages is 1, then window depth is 128. The trigger event is at sample 96 of that window. The
IP core captures a buffer that contains 96 samples before the trigger event, and 36 samples after the
trigger event. This setting captures data that shows the lead-up to the trigger event, and the
aftermath. The location of the trigger event is shown with the vertical cursor at fifo_full.

You can set the Trigger position to a number of samples between 0 and the window depth-1,
inclusive. When you set the trigger position equal to window depth-1, the last sample corresponds to
the cycle when the trigger occurs.

To observe more than one occurrence of the trigger event, change the Number of capture windows
to the desired number.

In this example, Number of capture windows is 4, Number of trigger stages is 1, Sample depth
is 128, and Trigger position is 0. HDL IP captures four windows, where each window depth is 32
samples, starting when fifo_full changes to high.

See Also
Tools
FPGA Data Capture Component Generator | FPGA Data Capture

Objects
hdlverifier.FPGADataReader

Blocks
FPGA Data Reader

Related Examples
• “Capture Temperature Sensor Data from Xilinx FPGA Board Using FPGA Data Capture” on page

8-2

More About
• “Data Capture Workflow” on page 6-2

6 FPGA Data Capture

6-10

Design Considerations for Data Capture
Signals to Capture
To get started with FPGA data capture, you must specify port names and sizes for the generated IP.
You then connect these ports to the signals in your design that you want to capture. You can specify
bit widths between 1 and 128 bits. The default data type of the captured data depends on this bit
width.

The FPGA data capture tools do not limit the total number of signals or bits you can capture. You are
limited only by the hardware resource usage on your FPGA. When you select signals and the depth of
the capture buffer, consider the memory and signal routing resources required on the FPGA.

In the FPGA Data Capture Component Generator, you can specify a signal for use as data or
trigger. When you specify a signal as data, the signal is captured to the sample buffer and returned to
MATLAB, but it cannot contribute to a trigger condition and capture condition. A data signal uses
memory resources on the FPGA. When you specify a signal as a trigger, it is available for defining a
trigger condition and capture condition at capture time, but is not captured and returned to MATLAB.
A trigger signal uses logic resources on the FPGA. You can also specify that the signal is used as both
trigger and data.

At capture time, you can configure the data type of the variable returned to MATLAB or Simulink. You
can select built-in types, or, with Fixed-Point Designer™, you can specify fixed-point data types. If you
do not have Fixed-Point Designer, data capture can only return built-in data types, such as uint8. In
this case, you must specify ports for the generated IP that match the sizes of the built-in data types,
that is, 1, 8, 16, 32, or 64 bits.

Capture Timing
The data capture feature captures a fixed-size buffer of data each time you request a capture. The
feature does not stream continuous data from your FPGA into MATLAB or Simulink. You can capture
a buffer immediately, or you can configure a logical trigger condition to control when the buffer is
captured. You can configure the timing of the capture relative to the cycle the trigger is detected in,
and configure the capturing of multiple windows of trigger events. You can also configure a logical
capture condition to filter the data to be captured. While the data capture IP waits for a trigger,
captures data, and returns the captured data to MATLAB, you cannot initiate a new capture request.
Therefore, you cannot capture back-to-back buffers from the FPGA.

Use this feature to investigate design behavior around a specific event or to sample data occasionally,
rather than for continuous observation. For more information about how to use trigger condition and
capture condition, see “Triggers” on page 6-7 and “Capture Conditions” on page 6-13, respectively.

JTAG Considerations
The generated data capture IP can coexist in your design with other IPs that use the JTAG connection,
such as Altera® SignalTap II or Xilinx Vivado Logic Analyzer cores. However, only one of these
applications can use the JTAG cable at a time. You must close the FPGA Data Capture tool or model,
or release the object, to return the JTAG resource for use by other applications.

The most common conflicting use of the JTAG cable is to reprogram the FPGA. You must stop any
FPGA data capture or AXI manager JTAG connection before you can use the cable to program the
FPGA.

 Design Considerations for Data Capture

6-11

The maximum data rate between host computer and FPGA is limited by the JTAG clock frequency. For
Intel boards, the JTAG clock frequency is 12 or 24 MHz. For Xilinx boards, the JTAG clock frequency
is 33 or 66 MHz. The JTAG frequency depends on the type of cable and the maximum clock frequency
supported by the FPGA board.

Simultaneous Use of FPGA Data Capture and AXI Manager

The nonblocking capture mode enables you to simultaneously use FPGA data capture and AXI
manager, which share a common JTAG interface. You do not need to close or release the JTAG
resource to switch between FPGA data capture and AXI manager.

FPGA data capture supports these two capture modes.

• Blocking mode — FPGA data capture blocks MATLAB while retrieving captured data. In this
capture mode, the JTAG resource is allocated to either FPGA data capture or AXI manager at a
time.

• Nonblocking mode — FPGA data capture does not block MATLAB while retrieving captured data.
In this capture mode, you can use FPGA data capture and AXI manager simultaneously.

By default, FPGA data capture is configured in blocking mode. Change the capture mode to
nonblocking mode by using the CaptureMode property for an hdlverifier.FPGADataReader
System object. After changing the capture mode to nonblocking, you can use the command line
interface or graphical user interface for performing the remaining steps in FPGA data capture and
AXI manager. For an example, see “Debug IP Core Using FPGA Data Capture” (HDL Coder).

Ethernet Considerations
The generated data capture IP can coexist in your design with other IPs that use the Ethernet
connection, such as UDP AXI Manager IP. However, you must connect these IPs to the same Ethernet
MAC Hub IP using different port addresses. For more information on Ethernet MAC Hub IP, see
“Ethernet AXI Manager” on page 3-10.

See Also

More About
• “Xilinx FPGA Board Support from HDL Verifier” on page 1-2
• “Supported EDA Tools and Hardware” on page 1-6
• “Data Capture Workflow” on page 6-2

6 FPGA Data Capture

6-12

Capture Conditions

What Is Capture Condition?
A capture condition is a logical statement that controls which data to capture from the FPGA. Use a
capture condition when you want to:

• Capture only the valid data to debug custom designs with FPGA data capture.
• Filter the data to capture based on trigger conditions.
• Optimize the use of an FPGA data capture buffer.
• Efficiently analyze the captured data when you have only a few captured samples of interest.

A capture condition is composed of value comparison tests on one or more FPGA signals. For
example:

counter == 100

All capture comparisons are synchronous. When you specify an edge condition for a Boolean signal,
the IP core compares the current sampled value with the sampled value from the previous clock
cycle.

fifo_full == 'Rising edge'

The capture condition is met when all terms of the condition are true on the same clock cycle. You
can use only a single value comparison per signal.

receiver_state == 3 OR message_detected == 'High'

fifo_cnt == 0 AND fifo_pop == 'High'

You can use only a single type of logical operator in the capture condition. You cannot mix AND and OR
conditions.
fifo_empty == 'Rising edge' OR fifo_full == 'Rising edge' OR memctrl_state == 2

receiver_state == 3 AND message_addr == 148 AND pkt_type == 5

You can use multiple comparison operators in the capture condition.
fifo_empty == 'Rising edge' OR fifo_full != 'LOW' OR memctrl_state == 2

receiver_state == 3 AND message_addr > 148 AND pkt_type >= 5

You can use X or x (don't-care value) in the capture condition. While comparing, the capture condition
ignores the place values with X. When the capture condition is 0b1X1, the possible trigger condition
values are 0b101 or 0b111.

receiver_state == 3 AND message_addr == 148 AND pkt_type == 0b1X1

Configure Capture Condition
At generation time, specify which signals you want to be available for use in the capture condition.
You can use a signal containing only a trigger or both a trigger and captured data. You can modify the
capture condition at capture time using any signals you specify as triggers. Also, at generation time,
you can include capture condition logic to use the capture condition. The data capture IP core on the

 Capture Conditions

6-13

FPGA receives the capture definition from MATLAB and configures on-chip muxes to detect the
capture event.

When you use the FPGA Data Capture tool or the FPGA Data Reader block, on the Capture
Condition tab, select the Enable capture condition logic parameter and then set the capture
condition. Each line in the table is the value comparison for one signal. To combine the signal values,
use the capture condition combination operator. To show a signal on this tab, you must specify the
signal as a trigger at generation time.

For an hdlverifier.FPGADataReader System object, enable capture condition logic using the
EnableCaptureCtrl property. Then configure the capture condition using the
setCaptureCondition, setCaptureConditionComparisonOperator, and
setCaptureConditionCombinationOperator object functions. To check your configuration, call
the displayCaptureCondition object function.

Differences Between Triggers and Capture Conditions
The trigger condition controls when to capture data from the FPGA. Once the trigger condition is
satisfied, the data capture IP core captures data from that trigger event. The capture condition
controls which data to capture. The data capture IP core evaluates the capture condition at each
clock cycle and captures only the data that satisfies the capture condition.

FPGA data capture operates in two modes: immediate mode and trigger mode. The data capture IP
core captures data from the FPGA without checking for the trigger condition in immediate mode and
based on a trigger condition in trigger mode. You can provide a capture condition in both modes.

Filter the data to capture using a capture condition. In immediate mode, use a capture condition to
capture data only when a certain condition is met. In trigger mode, use a capture condition to capture
data only when a certain condition is met after satisfying the trigger condition.

6 FPGA Data Capture

6-14

Data Capture Mode Trigger Condition Only Capture Condition Only Both Trigger and
Capture Conditions

Immediate Ignores all trigger
conditions

Captures data immediately
at each clock cycle

Captures data only when
the capture condition is
true

Ignores all trigger
conditions

Captures data only when
the capture condition is
true

Trigger Waits until the trigger
condition is true, then
captures data

Not supported, use
immediate mode instead

Waits until the trigger
condition is true, then
captures data only when
the capture condition is
true

See Also
Tools
FPGA Data Capture Component Generator | FPGA Data Capture

Objects
hdlverifier.FPGADataReader

Blocks
FPGA Data Reader

More About
• “Data Capture Workflow” on page 6-2

 Capture Conditions

6-15

Data Capture Reference

7

FPGA Data Capture Component Generator
Configure and generate FPGA data capture components

Description
The FPGA Data Capture Component Generator tool configures and generates components for
capturing data from a design running on an FPGA. The generated components capture a window of
signal data from the FPGA and return the data to MATLAB or Simulink.

To use this tool, you must have an existing HDL design and FPGA project. To capture the signals, HDL
Verifier generates an IP core that you must integrate into your HDL project, and deploy to the FPGA
along with the rest of your design.

The Generate button in this tool generates these components:

7 Data Capture Reference

7-2

• HDL IP core, for integration into your FPGA design. Connect the signals you want to capture and
use as triggers, and connect a clock and clock enable.

• Generation report, with list of generated files and instructions for next steps.
• Tool to set capture parameters and capture data to the MATLAB workspace. See FPGA Data

Capture.
• Customized version of the hdlverifier.FPGADataReader System object that provides an

alternative, programmatic, way to configure and capture data.
• Simulink model that contains a customized FPGA Data Reader block. If you have a DSP System

Toolbox™ license, this model streams the captured signals into the Logic Analyzer waveform
viewer. Otherwise, the Scope block displays the signals.

• MAT file in the datacapture_gensettings.mat format, where datacapture is the name of
the generated HDL IP core. This MAT file holds the data capture build parameters. To reload the
same design in your next iteration, provide this MAT file as an input argument to the
generateFPGADataCaptureIP function.

For a workflow overview, see “Data Capture Workflow” on page 6-2.

Open the FPGA Data Capture Component Generator
At the MATLAB command prompt, enter this command.

generateFPGADataCaptureIP

To reload the parameters of the most recent design, use the restore argument.

generateFPGADataCaptureIP('restore',true);

To reload the parameters of a design you already generated and saved in a MAT file, use the matFile
argument.

generateFPGADataCaptureIP('datacapture_gensettings.mat');

Where datacapture is the name of the generated HDL IP core that you specify in the Generated IP
name parameter.

Examples
• “Capture Temperature Sensor Data from Xilinx FPGA Board Using FPGA Data Capture” on page

8-2

Parameters
Ports

Port Name — Name of input port on generated IP
character vector | string scalar

The name does not have to match the signal name in your HDL files. This name is used for:

 FPGA Data Capture Component Generator

7-3

• Input port on the generated HDL IP core. Internal to the IP, this signal is routed to the capture
buffer, or to use as part of trigger condition and capture condition, depending on your selection
for Use As.

• Structure field in the captured data returned to the MATLAB workspace
• Port on the generated Simulink block
• Table of signals in the trigger, capture condition, and data types parameters editor at capture time

Data Types: char | string

Bit Width — Number of bits in signal
positive integer

This number is used to generate the HDL IP port definition, and contributes to the total width of the
capture buffer. You can specify the data type for the captured data at capture time.

Note If you do not have Fixed-Point Designer, data capture can only return built-in data types, such
as uint8. You must specify ports for the generated IP that match the sizes of the built-in data types,
that is 1, 8, 16, 32, or 64 bits. We recommend Fixed-Point Designer to enable fixed-point data types
and captured signals of any size.

Use As — How signal is routed inside IP logic
Both trigger and data (default) | Data | Trigger

When you specify a signal as Data, the signal is captured to the sample buffer and returned to
MATLAB, but it cannot contribute to a trigger condition and capture condition. When you specify a
signal as Trigger, it is available for defining a trigger condition and capture condition at capture
time, but is not captured and returned to MATLAB. You can also specify that the signal is used as
Both trigger and data.

Target

Generated IP name — Name of generated components
datacapture (default) | character vector

This name is used for the generated HDL IP core, the System object, and the Simulink model.

FPGA vendor — FPGA and software vendor
Altera (default) | Xilinx

The available vendors depend on which HDL Verifier support package you have installed. There are
separate support packages for Intel (Altera) and Xilinx boards.

Generated IP language — Language used for generated HDL IP core
VHDL (default) | Verilog

Select the language used for the generated HDL IP core as Verilog or VHDL.

Connection type — Type of connection channel
JTAG (default) | Ethernet

Select the type of connection channel as JTAG or Ethernet.

7 Data Capture Reference

7-4

Note Ethernet connection is available for Xilinx FPGA boards only.

Destination folder — Location to save generated files
hdlsrc (default) | character vector | string scalar

Location to save the generated files, specified as the name of a folder on the host computer.
Data Types: char | string

Capture

Sample depth — Number of samples captured for each signal
128 (default) | 256 | 512 | 1024 | 2048 | 4096 | 8192 | 16384 | 32768 | 65536 | 131072 | 262144 |
524288 | 1048576

Use this parameter to specify the size of the memory in the generated HDL IP core. The width of the
memory is the total bit width of the data signals.

When you specify the sample depth, consider the number of windows you plan to configure when
reading the data, because together they impact the window depth of each capture window. The
window depth is the sample depth divided by the number of capture windows. Specify the number of
capture windows by using the Number of capture windows parameter in the FPGA Data Capture
tool or by using the NumCaptureWindows property for an hdlverifier.FPGADataReader System
object.

For example, if the sample depth is 4096 and the number of capture windows is 4, then each capture
window has a window depth of 1024.

Max trigger stages — Maximum number of trigger stages for providing trigger conditions
1 (default) | integer from 1 to 10

Use this parameter to enable a sequential trigger. To capture specified data from an FPGA, give a set
of trigger conditions in multiple stages. For more information on sequential trigger, see “Sequential
Trigger” on page 6-7.

When you specify the Max trigger stages, consider the maximum number of trigger stages in which
you plan to configure the trigger conditions. Specify the number of trigger stages by using the
Number of trigger stages parameter in the FPGA Data Capture tool or by using the
NumTriggerStages property for an hdlverifier.FPGADataReader System object.

For example, if the maximum number of trigger stages is 4, then the number of trigger stages can be
1, 2, 3, or 4.

Include capture condition logic — Option to include capture condition logic in HDL IP core
off (default) | on

Select this parameter to include capture condition logic in the HDL IP core. Include capture condition
logic to use a capture condition to control which data to capture from the FPGA. The HDL IP core
evaluates the capture condition at each clock cycle and captures only the data that satisfies the
capture condition. For more information on capture conditions, see “Capture Conditions” on page 6-
13.

Set up a capture condition in the FPGA Data Capture tool or the hdlverifier.FPGADataReader
System object.

 FPGA Data Capture Component Generator

7-5

Ethernet settings

IP address — IP address of Ethernet port on target FPGA board
192.168.0.2 (default) | dotted-quad value

Specify the internet protocol (IP) address of the Ethernet port on the target FPGA board as a dotted-
quad value. The target IP address must be a set of four numbers consisting of integers in the range
from 0 to 255 that are separated by three dots.

Dependencies

To enable this parameter, in the Target section, set the Connection type parameter to Ethernet.

Port address — UDP port number of target FPGA board
50101 (default) | integer from 255 to 65,535

Specify the user datagram protocol (UDP) port number of the target FPGA board as an integer from
255 to 65,535.

Dependencies

To enable this parameter, in the Target section, set the Connection type parameter to Ethernet.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Interface type — Type of Ethernet interface for target FPGA board
GMII (default) | MII | SGMII

Select the Ethernet interface type as GMII, MII, or SGMII based on the interface for your target
FPGA board.

Dependencies

To enable this parameter, in the Target section, set the Connection type parameter to Ethernet.

Version History
Introduced in R2017a

See Also
FPGA Data Capture | generateFPGADataCaptureIP

Topics
“Capture Temperature Sensor Data from Xilinx FPGA Board Using FPGA Data Capture” on page 8-
2
“Data Capture Workflow” on page 6-2

7 Data Capture Reference

7-6

generateFPGADataCaptureIP
Open FPGA Data Capture Component Generator

Syntax
generateFPGADataCaptureIP
generateFPGADataCaptureIP('restore',true)
generateFPGADataCaptureIP(matFile)

Description
generateFPGADataCaptureIP opens the FPGA Data Capture Component Generator.

generateFPGADataCaptureIP('restore',true) opens the FPGA Data Capture Component
Generator and reloads the parameters of the most recent design.

generateFPGADataCaptureIP(matFile) opens the FPGA Data Capture Component
Generator and reloads the parameters of a design you already generated and saved in matFile.

Examples

Launch FPGA Data Capture Component Generator

This example shows how to launch the FPGA Data Capture Component Generator tool.

Open Tool With Default Settings

Run the following command to launch the FPGA Data Capture Component Generator tool:

generateFPGADataCaptureIP

 generateFPGADataCaptureIP

7-7

Input Arguments
restore — Option to reload most recent design parameters
false (default) | true

Option to reload the most recent design parameters, specified as true or false. When you specify
this input as true, the FPGA Data Capture Component Generator opens and reloads the
parameters of the most recent design. Otherwise, the tool opens with default settings.
Example: 'restore',true
Data Types: logical

matFile — MAT file containing design parameters
character vector | string scalar

7 Data Capture Reference

7-8

MAT file containing design parameters, specified as a character vector or string scalar. Specify this
input in the form datacapture_gensettings.mat, replacing datacapture with the generated
HDL IP core name.

This MAT file is a generated file in the same folder as your other generated data capture components.
When you specify this input, the FPGA Data Capture Component Generator opens and reloads the
parameters of the design specified by this value.

You must provide only the MAT file name if the file is in the current working folder.
Example: 'datacapture_gensettings.mat'

You must provide the full path to the saved MAT file if the file is not in the current working folder.
Example: 'C:/home/user/datacapture_gensettings.mat'
Data Types: char | string

Version History
Introduced in R2017a

R2023a: Reload previous design parameters

The function reloads the parameters of a design you already generated and saved in a MAT file.

To reload the same design in your next iteration, provide the MAT file containing design parameters
as an input argument to the function.

generateFPGADataCaptureIP('datacapture_gensettings.mat');

Where datacapture is the Generated IP name that you specify in the FPGA Data Capture
Component Generator tool.

See Also
FPGA Data Capture Component Generator

Topics
“Capture Temperature Sensor Data from Xilinx FPGA Board Using FPGA Data Capture” on page 8-
2

 generateFPGADataCaptureIP

7-9

FPGA Data Capture
Capture data from live FPGA into MATLAB workspace interactively

Description
The FPGA Data Capture tool captures data from a design running on an FPGA and returns it to the
MATLAB workspace. You can configure the data types of the returned values, specify the number of
capture windows and number of trigger stages, set up a trigger condition to control when the data is
captured, and set up a capture condition to control which data to capture.

Before using this tool, you must have generated the customized data capture components using the
FPGA Data Capture Component Generator tool. You must also integrate the generated IP code

7 Data Capture Reference

7-10

into your project and deploy it to the FPGA. The tool communicates with the FPGA over a JTAG or
Ethernet cable. Make sure that the required cable is connected between the board and the host
computer.

The tool is a wrapper over your generated hdlverifier.FPGADataReader System object. The
FPGA Data Capture tool defines the variable, fpgadc_obj in the workspace. If this variable already
exists, the tool opens using the existing object, and saves modifications to that object.

For a workflow overview, see “Data Capture Workflow” on page 6-2.

Open the FPGA Data Capture
• MATLAB command prompt: Enter launchDataCaptureApp. This function is a generated script in

the same folder as your other generated data capture components.

Examples
• “Capture Temperature Sensor Data from Xilinx FPGA Board Using FPGA Data Capture” on page

8-2

Parameters
Capture Data — When to capture data
Immediately (default) | On trigger

The default setting, capture Immediately, ignores any trigger condition and captures the buffer of
data when you click Capture Data. To capture data that includes a particular event in the FPGA
logic, configure a trigger condition and select On trigger. In this case, the data capture logic waits
until the trigger condition is true, then captures the buffer of data.

When you click Capture Data, a window with a Stop button opens. If you want to cancel the capture
attempt (for example, if the trigger condition does not occur), click Stop to return control to the tool.
When you abort a capture attempt, no data is returned to MATLAB.

Output

Output variable name — Name of structure in which to return captured data
dataCaptureOut (default) | character vector

The captured data is returned to a structure variable in the base MATLAB workspace. The data
returned from each signal is a vector of Sample depth values. Each signal becomes a field in the
structure. The field name in the structure is the same as the Signal Name.

Display data with Logic Analyzer — Automatically display data in Logic Analyzer
on (default) | off

This option appears if you have a DSP System Toolbox license. When you select this option, after data
capture is complete, the tool opens the Logic Analyzer window to display the captured data. The time
axes is measured in samples. The cursor location indicates the time the trigger was detected.

 FPGA Data Capture

7-11

Trigger

Sample depth — Number of samples captured for each signal
integer power of two

This parameter is read-only. It reflects the value you specified at generation time.

Number of capture windows — Number of data capture recurrences
1 (default) | integer power of two

Specify the number of recurrences to capture. This value must be a power of two, and cannot be
greater than Sample depth. When specifying the sample depth, consider the number of windows you
plan to configure when reading the data, because together they impact the window depth of each
capture window. The window depth is the Sample depth divided by the Number of capture
windows. Specify Sample depth in the FPGA Data Capture Component Generator tool.

For example: If Sample depth is 4096 and Number of capture windows is 4, then each capture
window has a window depth of 1024.

Number of trigger stages — Number of trigger stages for providing trigger conditions
M (default) | integer from 1 to M

Specify the number of trigger stages. This value must be an integer from 1 to M, where M is set by
the Max trigger stages parameter of the FPGA Data Capture Component Generator tool. When
you specify the Max trigger stages parameter, consider the maximum number of trigger stages in
which you plan to configure the trigger conditions to capture data.

For example, if Max trigger stages is 4, then Number of trigger stages can be 1, 2, 3, or 4.

Trigger position — Position of the trigger detection cycle within the capture buffer
0 (default) | integer up to window depth—1

By default, the clock cycle when the trigger is detected is the first sample of the capture buffer. You
can change the relative position of the trigger detection cycle within the capture buffer. A nondefault
trigger position means that some samples are captured before the trigger occurs. You can set this
parameter to any number from 0 to window depth—1, inclusive. When the trigger position is equal to
the window depth—1, the last sample corresponds to the cycle when the trigger occurs. If Number
of capture windows is greater than one, the same trigger position applies to all windows. For more
information, see “Triggers” on page 6-7.

Signal — Trigger component signal name
character vector

This parameter is read-only. The signal names you specified at generation time are listed in the drop-
down menu at the bottom. Click the + button to add a signal to the trigger condition.

Operator — Operator to compare signals within trigger condition
== | != | < | > | <= | >=

To compare signals, select one of these operators: ==, !=, <, >, <=, or >=. To compare signals
containing X or x (don't-care value), specify either == or != operator.

Value — Value to compare signal to as part of overall trigger condition
decimal | binary | hexadecimal | Low | High | Falling edge | Rising edge | Both edges

7 Data Capture Reference

7-12

The trigger condition can be composed of value comparisons of one or more signals. This parameter
specifies the value to match for each signal.

For a multibit signal, specify a decimal, binary, or a hexadecimal value within the range of the data
type associated with the signal. While providing hexadecimal or binary values, you can provide values
with a combination of X or x (don't care value) to enable bit masking. While comparing the values, the
trigger condition discards place values with X or x and provides the output.

To separate a group of bits for better readability, you can use _ between bits. For example, you can
represent a 32-bit binary value as 0b1010_XXXX_1011_XXXX_1110_XXXX_1111XXXX and a 32-bit
hexadecimal value as 0xAB_CDEXFX.

For boolean signals, select a level or edge condition. For more information, see “Triggers” on page
6-7.

Trigger combination operator — Logical operator for creating trigger condition
AND (default) | OR

This parameter is indicated by the logic gate icon. Click the Change operator button to toggle
between AND and OR.

The trigger condition can be composed of value comparisons of one or more signals. Combine these
value comparisons with only one type of logical operator. Suppose three signals, A, B, and C, make up
the trigger condition. The options are:

A == 10 AND B == 'Falling edge' AND C == 0

or

A == 10 OR B == 'Falling edge' OR C == 0

You cannot mix and match the combination operators. For more information, see “Triggers” on page
6-7.

Trigger time out — Maximum number of data capture IP core clock cycles within which trigger
condition must occur in a trigger stage
1 (default) | integer from 1 to 65,536

Within this many data capture IP core clock cycles, the trigger condition must occur in a trigger stage
in which you are enabling this parameter. You can specify any integer value from 1 to 65,536
according to your requirements. Select this parameter to enable trigger time out in a trigger stage. A
trigger time out is not allowed in Trigger Stage 1.

Capture Condition

Enable capture condition logic — Option to enable capture condition logic
off (default) | on

 FPGA Data Capture

7-13

Select this parameter to enable capture condition logic in the data capture IP core. Enable capture
condition logic to use a capture condition to control which data to capture from the FPGA. The data
capture IP core evaluates the capture condition at each clock cycle and captures only the data that
satisfies the capture condition. For more information on capture conditions, see “Capture Conditions”
on page 6-13.

Dependencies

To enable this parameter, in the FPGA Data Capture Component Generator tool, select Include
capture condition logic.

Signal — Capture component signal name
character vector

This parameter is read-only. The signal names you specified as triggers at generation time are listed
in the drop-down menu at the bottom. Click the + button to add a signal to the capture condition.

Dependencies

To enable this parameter, select Enable capture condition logic.

Operator — Operator to compare signals within capture condition
== | != | < | > | <= | >=

To compare signals, select one of these operators: ==, !=, <, >, <=, or >=. To compare signals
containing X or x (don't-care value), specify either == or != operator.

Dependencies

To enable this parameter, select Enable capture condition logic.

Value — Value to compare signal to as part of overall capture condition
decimal | binary | hexadecimal | Low | High | Falling edge | Rising edge | Both edges

The capture condition can be composed of value comparisons of one or more signals. This parameter
specifies the value to match for each signal.

For a multibit signal, specify a decimal, binary, or a hexadecimal value within the range of the data
type associated with the signal. While providing hexadecimal or binary values, you can provide values
with a combination of X or x (don't care value) to enable bit masking. While comparing the values, the
capture condition discards place values with X or x and provides the output.

To separate a group of bits for better readability, you can use _ between bits. For example, you can
represent a 32-bit binary value as 0b1010_XXXX_1011_XXXX_1110_XXXX_1111XXXX and a 32-bit
hexadecimal value as 0xAB_CDEXFX.

For boolean signals, select a level or edge condition. For more information, see “Capture
Conditions” on page 6-13.

Dependencies

To enable this parameter, select Enable capture condition logic.

Capture condition combination operator — Logical operator for creating capture condition
AND (default) | OR

7 Data Capture Reference

7-14

This parameter is indicated by the logic gate icon. Click the Change operator button to toggle
between AND and OR.

The capture condition can be composed of value comparisons of one or more signals. Combine these
value comparisons with only one type of logical operator. You cannot mix and match the combination
operators. For more information, see “Capture Conditions” on page 6-13.
Dependencies

To enable this parameter, select Enable capture condition logic.

Data Types

Signal Name — Captured signal name
character vector

This parameter is read-only. It reflects the value you specified at generation time. This name is the
name of the field in the structure variable.

Bit Width — Number of bits in the signal
positive integer

This parameter is read-only. It reflects the value you specified at generation time.

Data Type — Data type for captured data
built-in type | numerictype

The Data Type menu provides data type suggestions that match the bit width of the captured signal.
This size is the width you specified for the port on the generated IP. You can type in this field to
specify a custom data type. If the signal is 8, 16, or 32 bits, the default is uint. If the signal has one
bit, the default is boolean. If the signal is a different width, the default is
numerictype(0,bitWidth,0).

The tool supports these data types, depending on the signal bit width: boolean, uint8, int8,
uint16, int16, half, uint32, int32, single, uint64, int64, double, and numerictype.

Version History
Introduced in R2017a

See Also
Tools
FPGA Data Capture Component Generator

Objects
hdlverifier.FPGADataReader

 FPGA Data Capture

7-15

Blocks
FPGA Data Reader

Topics
“Capture Temperature Sensor Data from Xilinx FPGA Board Using FPGA Data Capture” on page 8-
2
“Data Capture Workflow” on page 6-2
“Triggers” on page 6-7
“Capture Conditions” on page 6-13

7 Data Capture Reference

7-16

hdlverifier.FPGADataReader
Package: hdlverifier

Capture data from live FPGA into MATLAB workspace

Description
The hdlverifier.FPGADataReader System object communicates with a generated HDL IP core
running on an FPGA board to capture signals from the FPGA into MATLAB.

The hdlverifier.FPGADataReader System object cannot be created directly. To use it, run FPGA
Data Capture Component Generator and generate your own customized FPGADataReader
System object. You can use the generated object directly or use the wrapper tool, FPGA Data
Capture, to set trigger condition, capture condition, and data types, and capture data.

Before you create the System object, you must have previously generated the customized data
capture components. You must also have integrated the generated IP code into your project and
deployed it to the FPGA. The object communicates with the FPGA over a JTAG or Ethernet cable.
Make sure that the required cable is connected between the board and the host computer.

For a workflow overview, see “Data Capture Workflow” on page 6-2.

Note Alternatively, instead of using the step method to perform the operation defined by the System
object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Creation
DC = mydc creates a customized object, DC, that captures data from a design running on an FPGA.
mydc is the component name you specified in the FPGA Data Capture Component Generator tool.

Properties
TimeOut — Number of seconds until aborting data capture
10 (default) | positive integer

If a trigger condition is enabled, but the HDL IP core does not detect the condition, the data capture
request times out after the specified number of seconds. If the data capture is aborted, no data is
returned to MATLAB.

When you use the tool for data capture, this property is ignored. Use the Stop button on the pop-up
window to abort a capture using the tool.

 hdlverifier.FPGADataReader

7-17

NumCaptureWindows — Number of data capture recurrences
1 (default) | integer power of two

Specify the number of recurrences to capture. This value must be a power of two, and cannot be
greater than Sample depth. When specifying the sample depth, consider the number of windows you
plan to configure when reading the data, because together they impact the window depth of each
capture window. The window depth is the Sample depth divided by the Number of capture windows.
Specify Sample depth in the FPGA Data Capture Component Generator tool.

For example: If Sample depth is 4096 and Number of capture windows is 4, then each capture
window has a window depth of 1024.

NumTriggerStages — Number of trigger stages for providing trigger conditions
M (default) | integer from 1 to M

Specify the number of trigger stages. This value must be an integer from 1 to M, where M is set by
the Max trigger stages parameter of the FPGA Data Capture Component Generator tool. When
you specify the Max trigger stages parameter, consider the maximum number of trigger stages in
which you plan to configure the trigger conditions to capture data.

For example, if Max trigger stages is 4, then NumTriggerStages can be 1, 2, 3, or 4.

TriggerPosition — Position of the trigger detection cycle within the capture buffer
0 (default) | integer up to window depth–1

By default, the clock cycle when the trigger is detected is the first sample of the capture buffer. You
can change the relative position of the trigger detection cycle within the capture buffer. A nondefault
trigger position means that some samples are captured before the trigger occurs. You can set this
parameter to an integer from 0 to window depth–1, inclusive. When the trigger position is equal to
window depth–1, the last sample corresponds to the cycle when the trigger occurs. For more
information, see “Triggers” on page 6-7.

EnableCaptureCtrl — Argument to enable capture condition logic
false (default) | true

Set this property to true to enable capture condition logic in the HDL IP core. Enable capture
condition logic to use a capture condition to control which data to capture from the FPGA. The HDL
IP core evaluates the capture condition at each clock cycle and captures only the data that satisfies
the capture condition. For more information on capture conditions, see “Capture Conditions” on page
6-13.

Dependencies

To enable this parameter, in the FPGA Data Capture Component Generator tool, select Include
capture condition logic.

CaptureMode — Capture mode
'blocking' (default) | 'nonblocking'

Specify the capture mode as one of these options:

• 'blocking' — The data capture object blocks MATLAB while retrieving captured data. In this
capture mode, the JTAG resource is allocated to either FPGA data capture or AXI manager at a
time.

7 Data Capture Reference

7-18

• 'nonblocking' — The data capture object does not block MATLAB while retrieving captured
data. In this capture mode, you can use FPGA data capture and AXI manager simultaneously.

If your development board has multiple FPGAs or multiple JTAG connections, the data capture
software cannot detect the location of your FPGA in the JTAG chain. Specify these advanced
parameters to locate the FPGA that contains the data capture IP core.

Advanced Board Setup

JTAGCableType — Type of JTAG cable used for communication with FPGA board
'auto' (default) | 'FTDI'

Specify this property if more than one JTAG cable is connected to the host computer. When not
specified, the object will auto-detect the JTAG cable type, in this order:

• The FPGADataReader object first searches for a Digilent cable.
• If it does not find a Digilent JTAG cable, it searches for an FTDI cable.
• If it finds two cables of the same type, the object returns an error. Specify JTAGCableName to

resolve it.
• If it finds two cables of different types, it will prioritize the Digilent cable. To use an FTDI cable,

set this property to 'FTDI'.

Dependencies

To enable this property, in the FPGA Data Capture Component Generator tool, set the
Connection type parameter to JTAG.

JTAGCableName — Name of JTAG cable used for data capture
'auto' (default) | character vector

Name of the JTAG cable used for data capture, specified as a character vector. Use this argument
when the board is connected to two JTAG cables of the same type

Dependencies

To enable this property, in the FPGA Data Capture Component Generator tool, set the
Connection type parameter to JTAG.

JTAGChainPosition — Position of FPGA in JTAG scan chain
0 (default) | positive integer

Position of the FPGA in the JTAG scan chain, specified as a positive integer.

Dependencies

To enable this property, in the FPGA Data Capture Component Generator tool, set the
Connection type parameter to JTAG.

IRLengthBefore — Instruction register lengths before the FPGA
0 (default) | nonnegative integer

Number of instruction register lengths before the FPGA, specified as a nonnegative integer.

 hdlverifier.FPGADataReader

7-19

Dependencies

To enable this property, in the FPGA Data Capture Component Generator tool, set the
Connection type parameter to JTAG.

IRLengthAfter — Instruction register lengths after the FPGA
0 (default) | nonnegative integer

Number of instruction register lengths after the FPGA, specified as a nonnegative integer.

Dependencies

To enable this property, in the FPGA Data Capture Component Generator tool, set the
Connection type parameter to JTAG.

TckFrequency — JTAG clock frequency
15 (default) | integer

Specify the JTAG clock frequency, in MHz. For Xilinx FPGAs, the JTAG clock frequency is 33 or 66
MHz. The JTAG frequency depends on the type of cable and the maximum clock frequency supported
by the FPGA board.

Dependencies

To enable this property, in the FPGA Data Capture Component Generator tool, set the
Connection type parameter to JTAG.

DeviceAddress — IP address of Ethernet port on FPGA board
192.168.0.2 (default) | dotted-quad value

Specify the internet protocol (IP) address of the Ethernet port on the FPGA board as a dotted-quad
value. The device IP address must be a set of four numbers consisting of integers in the range from 0
to 255 that are separated by three dots.

Dependencies

To enable this property, in the FPGA Data Capture Component Generator tool, set the
Connection type parameter to Ethernet.

Port — UDP port number of FPGA board
50101 (default) | integer from 255 to 65,535

Specify the user datagram protocol (UDP) port number of the FPGA board as an integer from 255 to
65,535.

Dependencies

To enable this property, in the FPGA Data Capture Component Generator tool, set the
Connection type parameter to Ethernet.

Object Functions
checkStatus Check current status of FPGA data capture in

nonblocking mode
clone Create hdlverifier.FPGADataReader System object with

same property values

7 Data Capture Reference

7-20

collectData Collect captured data from FPGA to host in nonblocking
mode

displayCaptureCondition Display overall capture condition
displayDataTypes Display data types for all captured signals
displayTriggerCondition Display overall trigger condition
isLocked Locked status
launchApp Open FPGA Data Capture app
release Release control of JTAG interface
setCaptureCondition Configure comparison for each signal value
setCaptureConditionCombinationOperator Configure operator that combines individual signal value

comparisons into overall capture condition
setCaptureConditionComparisonOperator Configure operator that compares individual signal

values within capture condition
setDataType Configure data type for the data captured from a signal
setNumberofTriggerStages Configure number of trigger stages for capturing data
setRunImmediateFlag Configure data capture to run immediately without any

trigger condition
setTriggerCombinationOperator Configure operator that combines individual signal value

comparisons into overall trigger condition
setTriggerComparisonOperator Configure operator that compares individual signal

values within trigger condition
setTriggerCondition Configure each signal value comparison
setTriggerTimeOut Configure maximum number of FDC IP core clock cycles

within which trigger condition must occur in a trigger
stage

step Capture one buffer of data from HDL IP core running on
FPGA

stop Stop FPGA data capture execution based on current
status in nonblocking mode

Examples

Capture Data from FPGA over JTAG Connection

This example shows how to use the hdlverifier.FPGADataReader System object™ to capture
data from a design running on an FPGA over a JTAG connection. The
hdlverifier.FPGADataReader System object provides a programmatic way to configure and
capture data. Generate an FPGA data reader System object by using the FPGA Data Capture
Component Generator tool. Then use the generated System object directly to set data types and
trigger conditions and capture data.

Generate hdlverifier.FPGADataReader System Object

To generate a customized hdlverifier.FPGADataReader System object, open the FPGA Data
Capture Component Generator tool by entering following command at the MATLAB® command
prompt. To use this tool, you must have an existing HDL design and FPGA project.

generateFPGADataCaptureIP;

This example uses a generated object, mydc, that defines two signals for data capture. Signal A is 1
bit and signal B is 8 bits. Both signals are also available for use in trigger conditions. The sample

 hdlverifier.FPGADataReader

7-21

depth is 4096 samples. To configure the hdlverifier.FPGADataReader System object to operate
on these two signals, follow these steps.

1 Add one row to the Ports table by clicking the Add button once.
2 Name the first signal A and the second signal B.
3 Set Bit Width of the two signals to 1 and 8, respectively.
4 Specify Generated IP name as mydc.
5 Set FPGA vendor to Xilinx.
6 Set Sample depth to 4096.
7 Set Max trigger stages to 2.

This figure shows these tool settings.

To generate the hdlverifier.FPGADataReader System object, click Generate. A report shows the
results of the generation. Integrate the generated IP code into your existing FPGA project and deploy

7 Data Capture Reference

7-22

it to the FPGA. The System object communicates with the FPGA over a JTAG cable. Make sure that
the JTAG cable connects the board and the host computer.

Go to the directory where the hdlverifier.FPGADataReader System object is generated.

cd hdlsrc;

Create a data capture object using your generated System object.

captureData = mydc

captureData =

 mydc with properties:

 Connection: 'JTAG'
 IsConditionalCapture: 0
 TriggerPosition: 0
 NumCaptureWindows: 1
 NumTriggerStages: 2
 TimeOut: 10
 EnableCaptureCtrl: 0
 CaptureMode: 'blocking'
 JTAGCableName: 'auto'
 JTAGCableType: 'auto'
 JTAGChainPosition: 0
 IRLengthBefore: 0
 IRLengthAfter: 0
 TckFrequency: 15
 MaxNumTriggerStages: 2

Capture Data Immediately

Create a data capture object. The default trigger condition is to trigger immediately. The default
configuration of the generated object does not enable any signals as part of the overall trigger
condition.

captureData = mydc;

Display the data types of the captured signals. The default data type for an 8-bit signal is uint8.

displayDataTypes(captureData);

Signal Name : Data Type
Capture_Window : uint32
Trigger_Position : boolean
A : boolean
B : uint8

Call the object. The data is captured immediately from the FPGA.

[Capture_Window,Trigger_Position,dataOut] = captureData();

The captured data is returned as a structure containing a field for the Capture_Window signal, a
field for the Trigger_Position signal, and a field for each signal captured by the data capture
object. The dataOut structure contains field A, which is a vector of 4096 logical values, and field
B, which is a vector of 4096 uint8 values.

 hdlverifier.FPGADataReader

7-23

Capture Data on Trigger Event

To debug signal values near a specific event, set up a trigger condition. The trigger condition can be
composed of value comparisons of one or more signals. You can combine these value comparisons
with only one type of logical operator, either an AND or OR operator.

Define a trigger condition to capture data when the FPGA detects a high value on A at the same time
as signal B is greater than 7.

captureData = mydc;
setTriggerCondition(captureData,'A',true,'High');
setTriggerCondition(captureData,'B',true,7);
setTriggerComparisonOperator(captureData,'B','>');

Display the overall trigger condition.

displayTriggerCondition(captureData);

The trigger condition is:
A==High and B>7

Call the object to capture data on the specified trigger event.

[~,~,dataOut] = captureData();

Define a trigger condition to capture data when the FPGA detects a high value on A at the same time
as the value of signal B is 0xAX. In signal B, the trigger condition checks the leftmost 4 bits provided
as A and ignores the rightmost 4 bits provided as X (X indicates bits for the function to ignore).

captureData = mydc;
setTriggerCondition(captureData,'A',true,'High');
setTriggerCondition(captureData,'B',true,'0xAX');

Display the overall trigger condition.

displayTriggerCondition(captureData);

The trigger condition is:
A==High and B==0xAX

Call the object to capture data on the specified trigger event.

[~,~,dataOut] = captureData();

dataOut is returned after the HDL IP core detects the trigger condition from the signals on the
FPGA. dataOut contains samples starting from the cycle when the trigger condition is detected.

Capture Data on Multiple Trigger Events

Define trigger conditions to capture data when the FPGA detects two trigger conditions in sequence.

• Trigger condition 1 - High value on A at the same time as signal B is equal to 7
• Trigger condition 2 - High value on A at the same time as signal B is greater than 15

captureData = mydc;
setNumberofTriggerStages(captureData,2);
setTriggerCondition(captureData,'A',true,'High');
setTriggerCondition(captureData,'B',true,7);

7 Data Capture Reference

7-24

setTriggerCondition(captureData,'A',true,'High',2);
setTriggerCondition(captureData,'B',true,15,2);
setTriggerComparisonOperator(captureData,'B','>',2);

Display the trigger condition. By default, the function displays the trigger condition in trigger stage 1.

displayTriggerCondition(captureData);

The trigger condition is:
A==High and B==7

Display the trigger condition in trigger stage 2.

displayTriggerCondition(captureData,2);

The trigger condition is:
A==High and B>15

Call the object to capture data on the specified trigger events.

[~,~,dataOut] = captureData();

dataOut is returned when the HDL IP core detects the trigger condition set in trigger stage 2 after
detecting the trigger condition set in trigger stage 1, satisfying the set sequence.

Capture Fixed-Point Data

The default data type for an 8-bit signal is uint8, but in your HDL design, you can represent the
signal using a fixed-point number. Set the data type of the captured data to cast it to the fixed-point
representation.

captureData = mydc;
setDataType(captureData,'B',numerictype(1,8,6));

Display the data types of the captured signals.

displayDataTypes(captureData);

Signal Name : Data Type
Capture_Window : uint32
Trigger_Position : boolean
A : boolean
B : numerictype(1,8,6)

Call the object to capture data on the specified trigger event.

[~,~,dataOut] = captureData();

In the dataOut structure, field A is a vector of 4096 logical values and field B is a vector of 4096
signed 8-bit fixed-point values, with 6 fractional bits.

Version History
Introduced in R2017a

 hdlverifier.FPGADataReader

7-25

See Also
Tools
FPGA Data Capture Component Generator | FPGA Data Capture

Blocks
FPGA Data Reader

Topics
“Capture Temperature Sensor Data from Xilinx FPGA Board Using FPGA Data Capture” on page 8-
2
“Debug IP Core Using FPGA Data Capture” (HDL Coder)
“Data Capture Workflow” on page 6-2
“Triggers” on page 6-7
“Capture Conditions” on page 6-13

7 Data Capture Reference

7-26

clone
Create hdlverifier.FPGADataReader System object with same property values

Syntax
DC2 = clone(DC)

Description
DC2 = clone(DC) creates a copy of the specified hdlverifier.FPGADataReader System object,
with the same property values. If a System object is locked, then clone creates a copy that is also
locked and has states initialized to the same values as the original. If a System object is not locked,
then clone creates a new unlocked System object with uninitialized states.

Input Arguments
DC — Data capture System object
hdlverifier.FPGADataReader System object

Customized data capture object, specified as an hdlverifier.FPGADataReader System object.

Output Arguments
DC2 — Data capture object
hdlverifier.FPGADataReader System object

Data capture object, with the same property values as input DC, returned as an
hdlverifier.FPGADataReader System object.

Version History
Introduced in R2017a

See Also
hdlverifier.FPGADataReader | FPGA Data Capture Component Generator | FPGA Data
Capture

 clone

7-27

displayDataTypes
Display data types for all captured signals

Syntax
displayDataTypes(DC)

Description
displayDataTypes(DC) displays the data type configured for each data capture signal. The default
data type depends on the bit width of the captured signal in the specified data capture System object.
This size is the width you specified for the port on the generated IP. If the signal is 8, 16, or 32 bits,
the default data type is uint. If the signal has one bit, the default data type is boolean. If the signal
is a different width, the default data type is numerictype(0,bitWidth,0).

To modify the data type of a signal, use the setDataType object function. The function supports
these data types, depending on the bit width of the captured signal: boolean, uint8, int8, uint16,
int16, half, uint32, int32, single, uint64, int64, double, and numerictype.

Input Arguments
DC — Data capture System object
hdlverifier.FPGADataReader System object

Customized data capture object, specified as an hdlverifier.FPGADataReader System object.

Version History
Introduced in R2017a

See Also
hdlverifier.FPGADataReader | FPGA Data Capture Component Generator | FPGA Data
Capture

7 Data Capture Reference

7-28

displayTriggerCondition
Display overall trigger condition

Syntax
displayTriggerCondition(DC)
displayTriggerCondition(DC,N)

Description
displayTriggerCondition(DC) displays the signal value comparisons and logical operator that
define the overall trigger condition in trigger stage 1. DC is a customized data capture object.

displayTriggerCondition(DC,N) displays the signal value comparisons and logical operator that
define the overall trigger condition in a trigger stage specified by N. DC is a customized data capture
object.

Input Arguments
DC — Customized data capture object
hdlverifier.FPGADataReader System object

Customized data capture object, specified as an hdlverifier.FPGADataReader System object.

N — Trigger stage
integer from 1 to M

Trigger stage, specified as an integer from 1 to M, where M is set by the Max trigger stages
parameter of the FPGA Data Capture Component Generator tool. Use N to display the trigger
condition in Nth trigger stage. If you do not specify N, by default, the function displays the trigger
condition in trigger stage 1.

Version History
Introduced in R2017a

See Also
Objects
hdlverifier.FPGADataReader

Tools
FPGA Data Capture Component Generator | FPGA Data Capture

 displayTriggerCondition

7-29

isLocked
Locked status

Syntax
tf = isLocked(DC)

Description
tf = isLocked(DC) returns the locked status, of the specified hdlverifier.FPGADataReader
System object.

isLocked returns a logical value that indicates whether input attributes and nontunable properties
for the object are locked. The object performs an internal initialization the first time that you call the
object. This initialization locks nontunable properties and input specifications, such as the
dimensions, complexity, and data type of the input data. After locking, isLocked returns a true
value.

Input Arguments
DC — Customized data capture object
hdlverifier.FPGADataReader System object

Customized data capture object, specified as an hdlverifier.FPGADataReader System object.

Output Arguments
tf — True or false result
1 | 0

True or false result indicating the locked status of the input System object DC, returned as a 1 or 0 of
data type logical. A 1 indicates the System object is locked.

Version History
Introduced in R2017a

See Also
hdlverifier.FPGADataReader | FPGA Data Capture Component Generator | FPGA Data
Capture

7 Data Capture Reference

7-30

launchApp
Open FPGA Data Capture app

Syntax
launchApp(DC)

Description
launchApp(DC) opens the FPGA Data Capture app, which captures data from a design running on
an FPGA and returns the captured data to the MATLAB workspace. The app is a wrapper on the
specified hdlverifier.FPGADataReader System object. Changes that you make in the app are
saved in the properties of the System object.

You can configure the data types of the returned values and set up a trigger condition to control when
the data is captured. You must have previously generated the customized data capture components
by using FPGA Data Capture Component Generator. You must also have integrated the generated
IP code into your project and deployed it to the FPGA. The tool communicates with the FPGA over a
JTAG cable. You must connect the JTAG cable between the board and the host computer.

Input Arguments
DC — Customized data capture object
hdlverifier.FPGADataReader System object

Customized data capture object, specified as an hdlverifier.FPGADataReader System object.

Version History
Introduced in R2017a

See Also
hdlverifier.FPGADataReader | FPGA Data Capture Component Generator | FPGA Data
Capture

 launchApp

7-31

release
Release control of JTAG interface

Syntax
release(DC)

Description
release(DC) releases system resources, including control of the JTAG interface, of the specified
hdlverifier.FPGADataReader System object. Releasing the System object enables you to change
its properties and input characteristics. While the System object exists and is locked, no other
processes can use the JTAG cable.

Input Arguments
DC — Customized data capture object
hdlverifier.FPGADataReader System object

Customized data capture object, specified as an hdlverifier.FPGADataReader System object.

Version History
Introduced in R2017a

See Also
hdlverifier.FPGADataReader | FPGA Data Capture Component Generator | FPGA Data
Capture

7 Data Capture Reference

7-32

setDataType
Configure data type for the data captured from a signal

Syntax
setDataType(DC,name,type)

Description
setDataType(DC,name,type) specifies the data type, type, for the data captured from a signal,
name.

Input Arguments
DC — Customized data capture object
hdlverifier.FPGADataReader System object

Customized data capture object, specified as an hdlverifier.FPGADataReader System object.

name — Trigger component signal
character vector

Specify a signal name matching one that you configured when you generated the object. The signal
must be configured as a data signal.

type — Data type for the captured data
built-in data type | numerictype

The bit width of the data type must match the bit width of the captured signal. This size is the width
you specified for the port on the generated IP.

The function supports these data types, depending on the bit width of the captured signal: boolean,
uint8, int8, uint16, int16, half, uint32, int32, single, uint64, int64, double, and
numerictype.

Version History
Introduced in R2017a

See Also
hdlverifier.FPGADataReader | FPGA Data Capture Component Generator | FPGA Data
Capture

 setDataType

7-33

setTriggerComparisonOperator
Configure operator that compares individual signal values within trigger condition

Syntax
setTriggerComparisonOperator(DC,name,operator)
setTriggerComparisonOperator(DC,name,operator,N)

Description
setTriggerComparisonOperator(DC,name,operator) configures a comparison operator that
compares individual signal values within the trigger condition in trigger stage 1. DC is a customized
data capture object, name is the name of a trigger component signal.

setTriggerComparisonOperator(DC,name,operator,N) configures a comparison operator
that compares individual signal values within the trigger condition in a trigger stage specified by N.
DC is a customized data capture object, name is the name of a trigger component signal.

Input Arguments
DC — Customized data capture object
hdlverifier.FPGADataReader System object

Customized data capture object, specified as an hdlverifier.FPGADataReader System object.

name — Name of trigger component signal
character vector

Name of a trigger component signal, specified as a character vector. This name must match one of
the signal names configured on creation of the input System object DC. The signal must be configured
as a possible trigger signal.

operator — Operator to compare signals within trigger condition
== (default) | != | < | > | <= | >=

Operator to compare signals within the trigger condition, specified as one of these operators: ==
(default), !=, <, >, <=, or >=.

The trigger condition comprises value comparisons of one or more signals. For a multibit signal,
specify one of these operators: == (default), !=, <, >, <=, or >=. For a trigger condition containing X
or x (don't-care value), specify either == or != operators. For a logical signal, specify one of these
operators: == or !=. For details on trigger conditions, see “Triggers” on page 6-7.

N — Trigger stage
integer from 1 to M

Trigger stage, specified as an integer from 1 to M, where M is set by the Max trigger stages on page
7-0 parameter of the FPGA Data Capture Component Generator tool. Use N to set the trigger
comparison operator in Nth trigger stage. If you do not specify N, by default, the function sets the
trigger comparison operator in trigger stage 1.

7 Data Capture Reference

7-34

Version History
Introduced in R2019b

See Also
hdlverifier.FPGADataReader | FPGA Data Capture Component Generator | FPGA Data
Capture

 setTriggerComparisonOperator

7-35

setTriggerCombinationOperator
Configure operator that combines individual signal value comparisons into overall trigger condition

Syntax
setTriggerCombinationOperator(DC,operator)
setTriggerCombinationOperator(DC,operator,N)

Description
setTriggerCombinationOperator(DC,operator) configures the logical operator that
combines comparisons of individual signals into an overall trigger condition in trigger stage 1. DC is a
customized data capture object.

setTriggerCombinationOperator(DC,operator,N) configures the logical operator that
combines comparisons of individual signals into an overall trigger condition in a trigger stage
specified by N. DC is a customized data capture object.

Input Arguments
DC — Customized data capture object
hdlverifier.FPGADataReader System object

Customized data capture object, specified as an hdlverifier.FPGADataReader System object.

operator — Logical operator to combine comparisons of individual signals into trigger
condition
AND | OR

Logical operator to combine comparisons of individual signals into a trigger condition, specified as
AND or OR. The trigger condition comprises value comparisons of one or more signals. To combine
value comparisons, you can use only one type of logical operator. For example, suppose three signals,
A, B, and C, make up the trigger condition. The options are:

• A == 10 AND B == 'Falling edge' AND C == 0

• A == 10 OR B == 'Falling edge' OR C == 0

You cannot mix and match the combination operators. For details on trigger conditions, see
“Triggers” on page 6-7.

N — Trigger stage
integer from 1 to M

Trigger stage, specified as an integer from 1 to M, where M is set by the Max trigger stages on page
7-0 parameter of the FPGA Data Capture Component Generator tool. Use N to set the
combination operator in Nth trigger stage. If you do not specify N, by default, the function sets the
combination operator in trigger stage 1.

7 Data Capture Reference

7-36

Version History
Introduced in R2017a

See Also
hdlverifier.FPGADataReader | FPGA Data Capture Component Generator | FPGA Data
Capture

 setTriggerCombinationOperator

7-37

setTriggerCondition
Configure each signal value comparison

Syntax
setTriggerCondition(DC,name,enable,value)
setTriggerCondition(DC,name,enable,value,N)

Description
setTriggerCondition(DC,name,enable,value) configures a trigger value comparison for
signal name in trigger stage 1. DC is a customized data capture object. The enable argument
indicates whether this signal is part of the overall trigger condition.

setTriggerCondition(DC,name,enable,value,N) configures a trigger value comparison for
signal name in a trigger stage specified by N. DC is a customized data capture object. The enable
argument indicates whether this signal is part of the overall trigger condition.

Input Arguments
DC — Customized data capture object
hdlverifier.FPGADataReader System object

Customized data capture object, specified as an hdlverifier.FPGADataReader System object.

name — Name of trigger component signal
character vector

Name of trigger component signal, specified as a character vector.

This name must match one of the signal names configured on creation of the input System object DC.
The signal must be configured as a possible trigger signal.
Data Types: char

enable — Indication that signal is part of trigger condition
true or 1 | false or 0

Indication that the signal is part of the trigger condition, specified as a numeric or logical 1 (true) or
0 (false). To use this signal in the overall trigger condition, set this value to 1 (true). When you set
this value to 0 (false), the signal is not used for the overall trigger condition.

value — Value to compare this signal to as part of the trigger condition
decimal | binary | hexadecimal | 'Low' | 'High' | 'Rising edge' | 'Falling edge' | 'Both
edges'

The trigger condition comprises value comparisons of one or more signals. This input specifies the
value to match for each signal.

For a multibit signal, specify a decimal, binary, or a hexadecimal value within the range of the data
type associated with the signal. While providing hexadecimal or binary values, you can provide values

7 Data Capture Reference

7-38

with a combination of X or x (don't care value) to enable bit masking. That means, while comparing
the values, the trigger condition ignores the place values with X or x and provides the output.

To separate a group of bits for better readability, you can use _ between bits. For example, you can
represent a 32-bit binary value as '0b1010_XXXX_1011_XXXX_1110_XXXX_1111XXXX' and a 32-bit
hexadecimal value as '0xAB_CDEXFX'.

For logical signals, specify a string that indicates the level or edge to match. For more information,
see “Triggers” on page 6-7.

N — Trigger stage
integer from 1 to M

Trigger stage, specified as an integer from 1 to M, where M is set by the Max trigger stages on page
7-0 parameter of the FPGA Data Capture Component Generator tool. Use N to set the trigger
condition in Nth trigger stage. If you do not specify N, by default, the function sets the trigger
condition in trigger stage 1.

Version History
Introduced in R2017a

See Also
hdlverifier.FPGADataReader | FPGA Data Capture Component Generator | FPGA Data
Capture

 setTriggerCondition

7-39

step
Capture one buffer of data from HDL IP core running on FPGA

Syntax
dataOut = step(DC)

Description

Note Alternatively, instead of using the step object function to perform the operation defined by the
System object, you can call the System object with arguments, as if it were a function. For example, y
= step(obj,x) and y = obj(x) perform equivalent operations.

dataOut = step(DC) captures live signal data from a design running on an FPGA. The FPGA must
contain an HDL IP core generated from the FPGA Data Capture Component Generator tool.
dataOut is a structure that contains a field for each signal captured. Call the setDataType object
function to specify the data type of each captured signal.

If at least one signal is enabled as part of the trigger condition, the HDL IP core waits for a match of
the trigger condition and captures the data. If no signals are enabled as part of the trigger condition,
the HDL IP core captures and returns the buffered data immediately. When you create the object, no
trigger condition is set by default. Call the setTriggerCondition and
setTriggerCombinationOperator object functions to configure a trigger condition.

Input Arguments
DC — Customized data capture object
FPGADataReader System object

Customized data capture object, specified as an hdlverifier.FPGADataReader System object.

Output Arguments
dataOut — Captured data
structure

Captured data, returned as a structure containing a field for the Capture_Window signal, a field for
the Trigger_Position signal, and a field for each signal captured by FPGA data capture. The
captured signal field is a vector of Sample depth values for each signal requested for data capture at
generation time. The fields of the structure have these signal names.

• Capture_Window — This signal indicates the current capture window.
• Trigger_Position — This signal indicates the position of the trigger detection clock cycle

within a capture buffer.
• All remaining fields — The signal names you specified at generation time.

7 Data Capture Reference

7-40

Version History
Introduced in R2017a

See Also
hdlverifier.FPGADataReader | FPGA Data Capture Component Generator | FPGA Data
Capture

Topics
“Triggers” on page 6-7

 step

7-41

setNumberofTriggerStages
Configure number of trigger stages for capturing data

Syntax
setNumberofTriggerStages(DC,N)

Description
setNumberofTriggerStages(DC,N) specifies an integer value configures the number of trigger
stages, N, for capturing data. DC is customized data capture object.

Input Arguments
DC — Customized data capture object
hdlverifier.FPGADataReader System object

Customized data capture object, specified as an hdlverifier.FPGADataReader System object.

N — Total number of trigger stages
integer from 1 to M

Total number of trigger stages in which you want to capture the data, specified as an integer from 1
to M, where M is set by the Max trigger stages on page 7-0 parameter of the FPGA Data Capture
Component Generator tool.

Version History
Introduced in R2020b

See Also
hdlverifier.FPGADataReader | FPGA Data Capture Component Generator | FPGA Data
Capture

7 Data Capture Reference

7-42

setTriggerTimeOut
Configure maximum number of FDC IP core clock cycles within which trigger condition must occur in
a trigger stage

Syntax
setTriggerTimeOut(DC,enable,value,N)

Description
setTriggerTimeOut(DC,enable,value,N) configures the maximum number of FPGA Data
Capture (FDC) IP core clock cycles, within which the trigger condition must occur in a trigger stage
specified by N. DC is a customized data capture object. Use enable argument to enable the trigger
time out in trigger stage N, specify the number of FDC IP core clock cycles using value argument.

Input Arguments
DC — Customized data capture object
hdlverifier.FPGADataReader System object

Customized data capture object, specified as an hdlverifier.FPGADataReader System object.

enable — Indication that trigger time out is part of specified trigger stage
true or 1 | false or 0

Indication that the trigger time out is part of the trigger stage, specified as a numeric or logical 1
(true) or 0 (false). To use the trigger time out in a particular trigger stage, set this value to 1
(true). When you set this value to 0 (false), the trigger time out is not used for the specified trigger
stage.

value — Number of FDC IP core clock cycles
integer from 1 to 65,536

Specify an integer from 1 to 65,536. Within this many FDC IP core clock cycles, the trigger condition
must occur in a trigger stage specified by N.

N — Trigger stage
integer from 2 to M

Trigger stage, specified as an integer from 2 to M, where M is set by the Max trigger stages on page
7-0 parameter of the FPGA Data Capture Component Generator tool. Use N to set the trigger
time out in Nth trigger stage. Trigger time out is not allowed for trigger stage 1.

Version History
Introduced in R2020b

 setTriggerTimeOut

7-43

See Also
hdlverifier.FPGADataReader | FPGA Data Capture Component Generator | FPGA Data
Capture

7 Data Capture Reference

7-44

setRunImmediateFlag
Configure data capture to run immediately without any trigger condition

Syntax
setRunImmediateFlag(DC,value)

Description
setRunImmediateFlag(DC,value) specifies whether the data capture object DC runs in immediate
mode. If value is true, the data capture object runs in immediate mode and captures data
immediately without checking for the trigger condition. In this mode, the data capture object
captures data either at each clock cycle or based on a capture condition if capture condition logic is
enabled. If value is false, the data capture object does not run in immediate mode.

Input Arguments
DC — Customized data capture object
hdlverifier.FPGADataReader System object

Customized data capture object, specified as an hdlverifier.FPGADataReader System object.

value — Flag to capture data immediately
true or 1 | false or 0

Flag to capture data immediately, specified as a numeric or logical 1 (true) or 0 (false). To ignore
the trigger condition and capture data immediately, set this value to 1 (true). In this case, the
generated object does not enable any signals as part of the overall trigger condition. To capture data
that includes a particular event in the FPGA logic, configure a trigger condition and set this value to
0 (false). In this case, the data capture object waits until the trigger condition is true, then captures
the data.

Version History
Introduced in R2022a

See Also
Objects
hdlverifier.FPGADataReader

Tools
FPGA Data Capture Component Generator | FPGA Data Capture

 setRunImmediateFlag

7-45

displayCaptureCondition
Display overall capture condition

Syntax
displayCaptureCondition(DC)

Description
displayCaptureCondition(DC) displays the signal value comparisons and logical operator that
define the overall capture condition. DC is a customized data capture object.

Examples

Display Capture Condition

This example uses a customized data capture object, DC, that defines two signals for both trigger and
data capture. Signal A is 1 bit and signal B is 8 bits.

Enable capture condition logic.

DC.EnableCaptureCtrl = true;

To enable capture condition logic, you must select the Include capture condition logic parameter
while generating the data capture IP core using the FPGA Data Capture Component Generator
tool.

Set up a capture condition to capture data when the FPGA detects a high value on signal A at the
same time as signal B is greater than 7.

setCaptureCondition(DC,'A',true,'High');
setCaptureCondition(DC,'B',true,7);
setCaptureConditionComparisonOperator(DC,'B','>');

Combine comparisons of signals A and B into an overall capture condition using an AND operator.

setCaptureConditionCombinationOperator(DC,'AND');

Display the overall capture condition.

displayCaptureCondition(DC);

The capture condition is:
A==High and B>7

Input Arguments
DC — Customized data capture object
hdlverifier.FPGADataReader System object

7 Data Capture Reference

7-46

Customized data capture object, specified as an hdlverifier.FPGADataReader System object.

Version History
Introduced in R2022a

See Also
Objects
hdlverifier.FPGADataReader

Tools
FPGA Data Capture Component Generator | FPGA Data Capture

 displayCaptureCondition

7-47

setCaptureCondition
Configure comparison for each signal value

Syntax
setCaptureCondition(DC,name,enable,value)

Description
setCaptureCondition(DC,name,enable,value) configures a capture value comparison for the
signal name. DC is a customized data capture object. The enable argument indicates whether this
signal is part of the overall capture condition.

Examples

Set Up Capture Condition

This example uses a customized data capture object, DC, that defines two signals for both trigger and
data capture. Signal A is 1 bit and signal B is 8 bits.

Enable capture condition logic.

DC.EnableCaptureCtrl = true;

To enable capture condition logic, you must select the Include capture condition logic parameter
while generating the data capture IP core using the FPGA Data Capture Component Generator
tool.

Set up a capture condition to capture data when the FPGA detects a high value on signal A and a
value 17 on signal B.

setCaptureCondition(DC,'A',true,'High');
setCaptureCondition(DC,'B',true,uint8(17));

Input Arguments
DC — Customized data capture object
hdlverifier.FPGADataReader System object

Customized data capture object, specified as an hdlverifier.FPGADataReader System object.

name — Name of capture component signal
character vector

Name of the capture component signal, specified as a character vector.

This name must match one of the signal names configured on creation of the input System object DC.
The signal must be configured as a possible trigger signal.
Data Types: char

7 Data Capture Reference

7-48

enable — Indication that signal is part of capture condition
true | false

Indication that the signal is part of the capture condition, specified as true or false. To use this
signal in the overall capture condition, set this value to true. When you set this value to false, the
signal is not used for the overall capture condition.

value — Value to compare signal to as part of capture condition
decimal | binary | hexadecimal | 'Low' | 'High' | 'Rising edge' | 'Falling edge' | 'Both
edges'

Value to compare the signal to as part of the capture condition, specified as one of the following.

• Decimal, binary, or hexadecimal value — For a multibit signal, specify a value within the range of
the data type associated with the signal. If you specify a binary or hexadecimal value, you can use
an X or x to indicate signals for the function to ignore during the value comparison.

To separate a group of bits for better readability, you can use _ between bits. For example, you
can represent a 32-bit binary value as '0b1010_XXXX_1011_XXXX_1110_XXXX_1111XXXX' and
a 32-bit hexadecimal value as '0xAB_CDEXFX'.

• 'Low', 'High', 'Rising edge', 'Falling edge', or 'Both edges' — For a logical signal,
specify a string that indicates the level or edge to match. For more information, see “Capture
Conditions” on page 6-13.

Version History
Introduced in R2022a

See Also
Objects
hdlverifier.FPGADataReader

Tools
FPGA Data Capture Component Generator | FPGA Data Capture

 setCaptureCondition

7-49

setCaptureConditionCombinationOperator
Configure operator that combines individual signal value comparisons into overall capture condition

Syntax
setCaptureConditionCombinationOperator(DC,operator)

Description
setCaptureConditionCombinationOperator(DC,operator) configures the logical operator
operator that combines comparisons of individual signals into an overall capture condition. DC is a
customized data capture object.

Examples

Combine Comparisons of Individual Signals into Overall Capture Condition

This example uses a customized data capture object, DC, that defines two signals for both trigger and
data capture. Signal A is 1 bit and signal B is 8 bits.

Enable capture condition logic.

DC.EnableCaptureCtrl = true;

To enable capture condition logic, you must select the Include capture condition logic parameter
while generating the data capture IP core using the FPGA Data Capture Component Generator
tool.

Set up a capture condition to capture data when the FPGA detects a high value on signal A at the
same time as signal B is equal to 17.

setCaptureCondition(DC,'A',true,'High');
setCaptureCondition(DC,'B',true,uint8(17));

Combine comparisons of signals A and B into an overall capture condition using an AND operator.

setCaptureConditionCombinationOperator(DC,'AND');

Input Arguments
DC — Customized data capture object
hdlverifier.FPGADataReader System object

Customized data capture object, specified as an hdlverifier.FPGADataReader System object.

operator — Logical operator to combine comparisons of individual signals into capture
condition
'AND' (default) | 'OR'

7 Data Capture Reference

7-50

Logical operator to combine comparisons of individual signals into a capture condition, specified as
'AND' or 'OR'. The capture condition comprises value comparisons of one or more signals. To
combine value comparisons, you can use only one type of logical operator. For example, suppose
three signals, A, B, and C, make up the capture condition. The options are:

• A == 10 AND B == 'Falling edge' AND C == 0

• A == 10 OR B == 'Falling edge' OR C == 0

You cannot mix and match the combination operators. For details on capture conditions, see “Capture
Conditions” on page 6-13.

Version History
Introduced in R2022a

See Also
Objects
hdlverifier.FPGADataReader

Tools
FPGA Data Capture Component Generator | FPGA Data Capture

 setCaptureConditionCombinationOperator

7-51

setCaptureConditionComparisonOperator
Configure operator that compares individual signal values within capture condition

Syntax
setCaptureConditionComparisonOperator(DC,name,operator)

Description
setCaptureConditionComparisonOperator(DC,name,operator) configures a comparison
operator operator that compares individual signal values within the capture condition. DC is a
customized data capture object. name is the name of a capture component signal.

Examples

Set Up Capture Condition Using Comparison Operator

This example uses a customized data capture object, DC, that defines two signals for both trigger and
data capture. Signal A is 1 bit and signal B is 8 bits.

Enable capture condition logic.

DC.EnableCaptureCtrl = true;

To enable capture condition logic, you must select the Include capture condition logic parameter
while generating the data capture IP core using the FPGA Data Capture Component Generator
tool.

Set up a capture condition to capture data when the FPGA detects a high value on signal A at the
same time as signal B is greater than 7.

setCaptureCondition(DC,'A',true,'High');
setCaptureCondition(DC,'B',true,7);
setCaptureConditionComparisonOperator(DC,'B','>');

Input Arguments
DC — Customized data capture object
hdlverifier.FPGADataReader System object

Customized data capture object, specified as an hdlverifier.FPGADataReader System object.

name — Name of capture component signal
character vector

Name of a capture component signal, specified as a character vector. This name must match one of
the signal names configured on creation of the input System object DC. The signal must be configured
as a possible trigger signal.

7 Data Capture Reference

7-52

operator — Operator to compare signals within capture condition
== (default) | != | < | > | <= | >=

Operator to compare signals within the capture condition, specified as one of these operators: ==, !=,
<, >, <=, or >=.

The capture condition comprises value comparisons of one or more signals. For a multibit signal,
specify one of these operators: == (default), !=, <, >, <=, or >=. For a capture condition containing X
or x (which indicate bits for the function to ignore), specify either the == or != operators. For a
logical signal, specify either the == or != operators. For details on capture conditions, see “Capture
Conditions” on page 6-13.

Version History
Introduced in R2022a

See Also
Objects
hdlverifier.FPGADataReader

Tools
FPGA Data Capture Component Generator | FPGA Data Capture

 setCaptureConditionComparisonOperator

7-53

checkStatus
Check current status of FPGA data capture in nonblocking mode

Syntax
status = checkStatus(DC)

Description
status = checkStatus(DC) returns the current status of the data capture object DC in
nonblocking capture mode.

Note The checkStatus function is not supported in blocking capture mode.

Examples

Check Current Status of Data Capture Object

Before you use this example, you must have previously generated the customized data capture object
using the FPGA Data Capture Component Generator tool. You must also have integrated the
generated IP code into your project and deployed it to the FPGA. The data capture object
communicates with the FPGA over a JTAG cable. Make sure that the required cable is connected
between the board and the host computer.

Create a data capture object, DC, that captures data from a design running on an FPGA.
datacapture is the generated IP name you specified in the FPGA Data Capture Component
Generator tool.

DC = datacapture

DC =

 datacapture with properties:

 Connection: 'JTAG'
 IsConditionalCapture: 0
 TriggerPosition: 0
 NumCaptureWindows: 1
 NumTriggerStages: 1
 TimeOut: 10
 EnableCaptureCtrl: 0
 CaptureMode: 'blocking'
 JTAGCableName: 'auto'
 JTAGCableType: 'auto'
 JTAGChainPosition: 0
 IRLengthBefore: 0
 IRLengthAfter: 0
 TckFrequency: 15
 MaxNumTriggerStages: 1

7 Data Capture Reference

7-54

Change the capture mode to nonblocking mode.

DC.CaptureMode = 'nonblocking';

Check the current status of the data capture object.

status = checkStatus(DC)

status =

 struct with fields:

 CapturedWindows: 0
 RunStatus: 'Not started'
 TriggerStage: 0

Use the step function to capture data. The data is captured immediately from the FPGA.

dataOut = step(DC);

Check the current status of the data capture object.

status = checkStatus(DC)

status =

 struct with fields:

 CapturedWindows: 1
 RunStatus: 'Successfully captured data from FPGA'
 TriggerStage: 0

Input Arguments
DC — Customized data capture object
hdlverifier.FPGADataReader System object

Customized data capture object, specified as an hdlverifier.FPGADataReader System object.

Output Arguments
status — Current status of data capture object
structure

Current status of the data capture object, returned as a structure containing fields for these signals.

• CapturedWindows — This signal indicates the total number of windows captured so far.
• RunStatus — This signal indicates the current running status of the data capture object using

one of these options.

• 'Not started' — Data capture not started.
• 'Waiting for trigger' — Data capture object is waiting for a trigger event to start data

capture.
• 'Evaluating capture condition' — Data capture object is evaluating the capture

condition.

 checkStatus

7-55

• 'Successfully captured data from FPGA' — Data captured successfully from the
FPGA.

• 'Stopped' — Data capture has stopped.
• TriggerStage — This signal indicates the trigger stage under evaluation for the run status

'Waiting for trigger'. For the run statuses 'Evaluating capture condition',
'Successfully captured data from FPGA', and 'Stopped', this signal indicates the
updated value of the trigger stage.

Version History
Introduced in R2022a

See Also
Objects
hdlverifier.FPGADataReader

Tools
FPGA Data Capture Component Generator | FPGA Data Capture

7 Data Capture Reference

7-56

collectData
Collect captured data from FPGA to host in nonblocking mode

Syntax
capturedData = collectData(DC)

Description
capturedData = collectData(DC) returns the captured data from an FPGA to the host machine
in nonblocking capture mode. DC is a customized data capture object.

Note The collectData function is not supported in blocking capture mode.

Examples

Collect Captured Data from FPGA

Before you use this example, you must have previously generated the customized data capture object,
using the FPGA Data Capture Component Generator tool. You must also have integrated the
generated IP code into your project and deployed it to the FPGA. The data capture object
communicates with the FPGA over a JTAG cable. Make sure that the required cable is connected
between the board and the host computer.

This example uses a generated object, datacapture, that defines two signals for data capture.
Signal A is 16 bits and signal B is 8 bits. Both signals are also available for use in trigger conditions.
The sample depth is 1024 samples.

Create a data capture object, DC, that captures data from a design running on an FPGA.
datacapture is the generated IP name you specified in the FPGA Data Capture Component
Generator tool.

DC = datacapture

DC =

 datacapture with properties:

 Connection: 'JTAG'
 IsConditionalCapture: 0
 TriggerPosition: 0
 NumCaptureWindows: 1
 NumTriggerStages: 1
 TimeOut: 10
 EnableCaptureCtrl: 0
 CaptureMode: 'blocking'
 JTAGCableName: 'auto'
 JTAGCableType: 'auto'
 JTAGChainPosition: 0

 collectData

7-57

 IRLengthBefore: 0
 IRLengthAfter: 0
 TckFrequency: 15
 MaxNumTriggerStages: 1

Change the capture mode to nonblocking mode.

DC.CaptureMode = 'nonblocking';

Check the current status of the data capture object.

status = checkStatus(DC)

status =

 struct with fields:

 CapturedWindows: 0
 RunStatus: 'Not started'
 TriggerStage: 0

Define a trigger condition to capture data when the signal B is equal to 10.

setTriggerCondition(DC,'B',true,10);

Use the step function to capture data on the specified trigger event.

dataOut = step(DC);

Check the current status of the data capture object.

status = checkStatus(DC)

status =

 struct with fields:

 CapturedWindows: 1
 RunStatus: 'Successfully captured data from FPGA'
 TriggerStage: 0

Collect captured data.

capturedData = collectData(DC)

Captured 1 windows of data from FPGA.

capturedData =

 struct with fields:

 Capture_Window: [1024×1 uint32]
 Trigger_Position: [1024×1 logical]

7 Data Capture Reference

7-58

 A: [1024×1 uint16]
 B: [1024×1 uint8]

Input Arguments
DC — Customized data capture object
hdlverifier.FPGADataReader System object

Customized data capture object, specified as an hdlverifier.FPGADataReader System object.

Output Arguments
capturedData — Captured data
structure

Captured data, returned as a structure containing a field for the Capture_Window signal, a field for
the Trigger_Position signal, and a field for each signal obtained by FPGA data capture. The
captured signal field is a vector of Sample depth values for each signal requested for data capture at
generation time. The fields of the structure have these signal names.

• Capture_Window — This signal indicates the current capture window.
• Trigger_Position — This signal indicates the position of the trigger detection clock cycle

within a capture buffer.
• All remaining fields — The signal names you specified at generation time.

Version History
Introduced in R2022a

See Also
Objects
hdlverifier.FPGADataReader

Tools
FPGA Data Capture Component Generator | FPGA Data Capture

 collectData

7-59

stop
Stop FPGA data capture execution based on current status in nonblocking mode

Syntax
stop(DC)

Description
stop(DC) stops the execution of the data capture object DC based on the current status in
nonblocking capture mode. Stop execution of the specified data capture object when the current
status of the object is 'Waiting for trigger'. If you want to cancel the capture attempt (for
example, if the trigger condition does not occur), use this function to return control to the object.
When you cancel a capture attempt, no data is returned to MATLAB.

Note The stop function is not supported in blocking capture mode.

Examples

Stop FPGA Data Capture Execution

Before you use this example, you must have previously generated the customized data capture object
using the FPGA Data Capture Component Generator tool. You must also have integrated the
generated IP code into your project and deployed it to the FPGA. The data capture object
communicates with the FPGA over a JTAG cable. Make sure that the required cable is connected
between the board and the host computer.

This example uses a generated object, datacapture, that defines two signals for data capture.
Signal A is 16 bits and signal B is 8 bits. Both signals are also available for use in trigger conditions.
The sample depth is 1024 samples.

Create a data capture object, DC, that captures data from a design running on an FPGA.
datacapture is the generated IP name you specified in the FPGA Data Capture Component
Generator tool.

DC = datacapture

DC =

 datacapture with properties:

 Connection: 'JTAG'
 IsConditionalCapture: 0
 TriggerPosition: 0
 NumCaptureWindows: 1
 NumTriggerStages: 1
 TimeOut: 10
 EnableCaptureCtrl: 0

7 Data Capture Reference

7-60

 CaptureMode: 'blocking'
 JTAGCableName: 'auto'
 JTAGCableType: 'auto'
 JTAGChainPosition: 0
 IRLengthBefore: 0
 IRLengthAfter: 0
 TckFrequency: 15
 MaxNumTriggerStages: 1

Change the capture mode to nonblocking mode.

DC.CaptureMode = 'nonblocking';

Check the current status of the data capture object.

status = checkStatus(DC)

status =

 struct with fields:

 CapturedWindows: 0
 RunStatus: 'Not started'
 TriggerStage: 0

Define a trigger condition to capture data when the signal B is equal to 255.

setTriggerCondition(DC,'B',true,255);

Use the step function to capture data on the specified trigger event.

dataOut = step(DC);

Check the current status of the data capture object.

status = checkStatus(DC)

status =

 struct with fields:

 CapturedWindows: 0
 RunStatus: 'Waiting for trigger'
 TriggerStage: 1

Stop data capture.

stop(DC);

Check the current status of the data capture object.

status = checkStatus(DC)

status =

 struct with fields:

 CapturedWindows: 0

 stop

7-61

 RunStatus: 'Stopped'
 TriggerStage: 1

Input Arguments
DC — Customized data capture object
hdlverifier.FPGADataReader System object

Customized data capture object, specified as an hdlverifier.FPGADataReader System object.

Version History
Introduced in R2022a

See Also
Objects
hdlverifier.FPGADataReader

Tools
FPGA Data Capture Component Generator | FPGA Data Capture

7 Data Capture Reference

7-62

FPGA Data Reader
Capture data from live FPGA into Simulink model

Libraries:
Generated

Description
The FPGA Data Reader block communicates with a generated IP core on an FPGA to return captured
data into Simulink.

Before you run this block, you must generate the customized data capture components. Integrate the
generated HDL IP core into your project and deploy it to the FPGA. The block communicates with the
FPGA over a JTAG or Ethernet cable. Make sure that the required cable is connected between the
board and the host computer.

For a workflow overview, see “Data Capture Workflow” on page 6-2.

By default, the FPGA Data Capture Component Generator tool generates a data capture model
that contains this block and a scope. If you have a DSP System Toolbox license, the captured data is
streamed to the Logic Analyzer tool. Otherwise, the Scope block shows the captured data. You can
add other blocks to the model for analysis, verification, and display.

 FPGA Data Reader

7-63

Ports
The output ports of the FPGA Data Reader block correspond to the signals you requested to capture
in FPGA Data Capture Component Generator. Set the data types for these ports in the Signal
and Trigger Editor, opened from the block parameters.

Output

Capture_Window — Current capture window
scalar

This output port indicates the current capture window. The value of this output port is an integer
from 1 to the value of the Sample depth parameter.

Trigger_Position — Position of trigger detection clock cycle within capture buffer
Boolean scalar

This output port indicates the position of the trigger detection clock cycle within a capture buffer.

Parameters
Sample time — Rate of output signals
double

The block returns one frame of data per time step, where the frame is the entire capture buffer for
each signal. Each frame contains Sample depth values, as specified at generation time. The default
sample time provides for unbuffering each frame into single samples, which results in a sample time
of 1.

Trigger

Sample depth — Number of samples captured for each signal
integer

This parameter is read-only. It reflects the value you specified at generation time.

Number of capture windows — Number of data capture recurrences
1 (default) | integer power of two

Specify the number of recurrences to capture. This value must be a power of two, up to Sample
depth. A window depth is defined as Sample depth / Number of capture windows. Consider the
Number of capture windows when setting the Sample depth, to allow for sufficient buffering.

Number of trigger stages — Number of trigger stages for providing trigger conditions
M (default) | integer from 1 to M

Specify the number of trigger stages. This value must be an integer from 1 to M, where M is set by
the Max trigger stages parameter of the FPGA Data Capture Component Generator tool. When
you specify the Max trigger stages parameter, consider the maximum number of trigger stages in
which you plan to configure the trigger conditions to capture data.

Trigger position — Position of trigger detection cycle within capture buffer
0 (default) | integer up to window depth–1

7 Data Capture Reference

7-64

By default, the clock cycle when the trigger is detected is the first sample of the capture buffer. You
can change the relative position of the trigger detection cycle within the capture buffer. A nondefault
trigger position means that some samples are captured before the trigger occurs. You can set this
parameter to any number between 0 and window depth–1, inclusive. When the trigger position is
equal to the window depth–1, the last sample corresponds to the cycle when the trigger occurs. If
Number of capture windows is greater than one, the same trigger position applies to all windows.
See “Triggers” on page 6-7.

Signal — Trigger component signal name
character vector

This parameter is read-only. The signal names you specified at generation time are listed in the drop-
down menu at the bottom. Click the + button to add a signal to the trigger condition.

Operator — Operator to compare signals within trigger condition
== | != | < | > | <= | >=

To compare signals, select one of these operators: ==, !=, <, >, <=, or >=. To compare signals
containing X or x (don't-care value), specify either == or != operator.

Value — Value to compare signal to as part of overall trigger condition
decimal | binary | hexadecimal | Low | High | Rising edge | Falling edge | Both edges

The trigger condition can be composed of value comparisons of one or more signals. This parameter
specifies the value to match for each signal.

For a multi-bit signal, specify a decimal, binary, or a hexadecimal value within the range of the data
type associated with the signal. While providing hexadecimal or binary values, you can provide values
with a combination of X or x (don't care value) to enable bit masking. While comparing the values, the
trigger condition discards place values with X or x and provides the output.

To separate a group of bits for better readability, you can use _ between bits. For example, you can
represent a 32-bit binary value as 0b1010_XXXX_1011_XXXX_1110_XXXX_1111XXXX and a 32-bit
hexadecimal value as 0xAB_CDEXFX.

For boolean signals, select a level or edge condition. See “Triggers” on page 6-7.

Trigger combination operator — Logical operator to combine comparisons of individual signals into
overall trigger condition
AND (default) | OR

This parameter is indicated by the logic gate icon. Click the Change operator button to toggle
between AND and OR.

The trigger condition can be composed of value comparisons of one or more signals. Combine these
value comparisons with only one type of logical operator. Suppose three signals, A, B, and C, make up
the trigger condition. The options are:

 FPGA Data Reader

7-65

A == 10 AND B == 'Falling edge' AND C == 0

or

A == 10 OR B == 'Falling edge' OR C == 0

You cannot mix and match the combination operators. See “Triggers” on page 6-7.

Trigger time out — Maximum number of data capture IP core clock cycles within which trigger
condition must occur in a trigger stage
1 (default) | integer from 1 to 65,536

Within this many data capture IP core clock cycles, the trigger condition must occur in a trigger stage
in which you are enabling this parameter. You can specify any integer value from 1 to 65,536
according to your requirements. Select this parameter to enable trigger time out in a trigger stage. A
trigger time out is not allowed in Trigger Stage 1.

Time out — Number of seconds to wait before aborting data capture, if the trigger condition is not
met
10 (default) | positive integer

If a trigger condition is enabled, but the HDL IP core does not detect the condition, the data capture
request times out after this many seconds. No data is returned to Simulink.

Capture Condition

Enable capture condition logic — Option to enable capture condition logic
off (default) | on

Select this parameter to enable capture condition logic in the data capture IP core. Enable capture
condition logic to use a capture condition to control which data to capture from the FPGA. The data
capture IP core evaluates the capture condition at each clock cycle and captures only the data that
satisfies the capture condition. For more information on capture conditions, see “Capture Conditions”
on page 6-13.

Dependencies

To enable this parameter, in the FPGA Data Capture Component Generator tool, select Include
capture condition logic.

Signal — Capture component signal name
character vector

This parameter is read-only. The signal names you specified as triggers at generation time are listed
in the drop-down menu at the bottom. Click the + button to add a signal to the capture condition.

Dependencies

To enable this parameter, select Enable capture condition logic.

Operator — Operator to compare signals within capture condition
== | != | < | > | <= | >=

To compare signals, select one of these operators: ==, !=, <, >, <=, or >=. To compare signals
containing X or x (don't-care value), specify either == or != operator.

7 Data Capture Reference

7-66

Dependencies

To enable this parameter, select Enable capture condition logic.

Value — Value to compare signal to as part of overall capture condition
decimal | binary | hexadecimal | Low | High | Rising edge | Falling edge | Both edges

The capture condition can be composed of value comparisons of one or more signals. This parameter
specifies the value to match for each signal.

For a multi-bit signal, specify a decimal, binary, or a hexadecimal value within the range of the data
type associated with the signal. While providing hexadecimal or binary values, you can provide values
with a combination of X or x (don't care value) to enable bit masking. While comparing the values, the
capture condition discards place values with X or x and provides the output.

To separate a group of bits for better readability, you can use _ between bits. For example, you can
represent a 32-bit binary value as 0b1010_XXXX_1011_XXXX_1110_XXXX_1111XXXX and a 32-bit
hexadecimal value as 0xAB_CDEXFX.

For boolean signals, select a level or edge condition. See “Capture Conditions” on page 6-13.

Dependencies

To enable this parameter, select Enable capture condition logic.

Capture condition combination operator — Logical operator to combine comparisons of individual
signals into overall capture condition
AND (default) | OR

This parameter is indicated by the logic gate icon. Click the Change operator button to toggle
between AND and OR.

The capture condition can be composed of value comparisons of one or more signals. Combine these
value comparisons with only one type of logical operator. You cannot mix and match the combination
operators. See “Capture Conditions” on page 6-13.

Dependencies

To enable this parameter, select Enable capture condition logic.

Data Types

Signal Name — Name of output port
character vector

This parameter is read-only. It reflects the name of the Capture_Window output port, the name of
the Trigger_Position output port, and the signal names you specify at generation time.

 FPGA Data Reader

7-67

Bit Width — Number of bits in signal
positive integer

This parameter is read-only. It reflects the value you specified at generation time.

Data Type — Data type for captured data
built-in type | numerictype

The Data Type menu provides data type suggestions that match the bit width of the captured signal.
This size is the width you specified for the port on the generated IP. You can type in this field to
specify a custom data type. If the signal is 8, 16, or 32 bits, the default is uint. If the signal has one
bit, the default is boolean. If the signal is a different width, the default is
numerictype(0,bitWidth,0).

The block supports these data types, depending on the signal bit width: boolean, uint8, int8,
uint16, int16, half, uint32, int32, single, uint64, int64, double, and numerictype.

If your development board has multiple FPGAs or multiple JTAG connections, the data capture
software cannot detect the location of your FPGA in the JTAG chain. Specify these advanced
parameters to locate the FPGA that contains the data capture IP core.

Advanced Board Setup

JTAG cable name — Name of JTAG cable used for data capture
auto (default) | character vector

Name of the JTAG cable used for data capture, specified as a character vector. Use this parameter
when the board is connected to two JTAG cables of the same type.

Dependencies

To enable this parameter, in the FPGA Data Capture Component Generator tool, set the
Connection type parameter to JTAG.

JTAG cable type — Type of JTAG cable used for communication with FPGA board
auto (default) | FTDI

Specify this parameter if more than one JTAG cable is connected to the host computer. When not
specified, the FPGA Data Reader block will auto-detect the JTAG cable type, in the following order:

• The FPGA Data Reader block first searches for a Digilent cable.
• If it does not find a Digilent JTAG cable, it searches for an FTDI cable.
• If it finds two cables of the same type, the object returns an error. Set this parameter to resolve it.
• If it finds two cables of different types, it will prioritize the Digilent cable. To use an FTDI cable,

set this parameter to FTDI.

Dependencies

To enable this parameter, in the FPGA Data Capture Component Generator tool, set the
Connection type parameter to JTAG.

JTAG chain position — Position of FPGA in JTAG scan chain
0 (default) | positive integer

Position of the FPGA in the JTAG scan chain, specified as a positive integer.

7 Data Capture Reference

7-68

Dependencies

To enable this parameter, in the FPGA Data Capture Component Generator tool, set the
Connection type parameter to JTAG.

Instruction registers before FPGA — Instruction register lengths before FPGA
0 (default) | nonnegative integer

Number of instruction register lengths before the FPGA, specified as a nonnegative integer.

Dependencies

To enable this parameter, in the FPGA Data Capture Component Generator tool, set the
Connection type parameter to JTAG.

Instruction registers after FPGA — Instruction register lengths after FPGA
0 (default) | nonnegative integer

Number of instruction register lengths after the FPGA, specified as a nonnegative integer.

Dependencies

To enable this parameter, in the FPGA Data Capture Component Generator tool, set the
Connection type parameter to JTAG.

JTAG clock frequency in MHz — JTAG clock frequency
15 (default) | integer

Specify the JTAG clock frequency, in MHz. For Xilinx FPGAs, the JTAG clock frequency is 33 or 66
MHz. The JTAG frequency depends on the type of cable and the maximum clock frequency supported
by the FPGA board.

Dependencies

To enable this parameter, in the FPGA Data Capture Component Generator tool, set the
Connection type parameter to JTAG.

Device IP address — IP address of Ethernet port on FPGA board
192.168.0.2 (default) | dotted-quad value

Specify the internet protocol (IP) address of the Ethernet port on the FPGA board as a dotted-quad
value. The device IP address must be a set of four numbers consisting of integers in the range from 0
to 255 that are separated by three dots.

Dependencies

To enable this parameter, in the FPGA Data Capture Component Generator tool, set the
Connection type parameter to Ethernet.

Device Port address — UDP port number of FPGA board
50101 (default) | integer from 255 to 65,535

Specify the user datagram protocol (UDP) port number of the FPGA board as an integer from 255 to
65,535.

 FPGA Data Reader

7-69

Dependencies

To enable this parameter, in the FPGA Data Capture Component Generator tool, set the
Connection type parameter to Ethernet.

Version History
Introduced in R2017a

See Also
Apps
FPGA Data Capture

Objects
hdlverifier.FPGADataReader

Topics
“Data Capture Workflow” on page 6-2
“Triggers” on page 6-7
“Capture Conditions” on page 6-13

7 Data Capture Reference

7-70

HDL Verifier Support Package for Xilinx
FPGA Boards Examples

8

Capture Temperature Sensor Data from Xilinx FPGA Board
Using FPGA Data Capture

This example shows how to use FPGA data capture with existing HDL design to capture FPGA
internal signals over a JTAG or Ethernet connection. Start with an existing FPGA design that
implements Xilinx® XADC IP to read the on-chip temperature sensor data. The XADC IP exposes a
dynamic reconfiguration port (DRP) interface for read and write internal registers. This FPGA design
contains logic that reads out the temperature sensor register from the XADC IP. To obtain the
temperature reading for further analysis, use the FPGA data capture feature to read the raw sensor
data into the MATLAB® workspace. Then, MATLAB converts the raw temperature data to Celsius.

Requirements and Prerequisites

• MATLAB
• HDL Verifier™
• HDL Verifier Support Package for Xilinx FPGA Boards
• Fixed-Point Designer™
• Xilinx Vivado® Design Suite, with a supported version listed in “Supported EDA Tools and

Hardware” on page 1-6
• For JTAG connection: ZedBoard™ or Xilinx Virtex®-7 VC707 development board
• For Ethernet connection: Xilinx Virtex-7 KC705 development board
• JTAG cable and/or Ethernet cable

Prepare Example Resources

Set up the Xilinx Vivado Design Suite. This example assumes that the Xilinx Vivado executable is
located in the file C:\Xilinx\Vivado\2020.2\bin\vivado.bat. If the location of your
executable is different, use your path instead.

hdlsetuptoolpath('ToolName','Xilinx Vivado','ToolPath', ...
 'C:\Xilinx\Vivado\2020.2\bin\vivado.bat');

Set Up FPGA Development Board

1. Confirm that the power switch is off.

8 HDL Verifier Support Package for Xilinx FPGA Boards Examples

8-2

2. Connect the AC power cord to the power plug and plug the power supply adapter cable into the
FPGA development board.

3. Use the JTAG download cable to connect the FPGA development board with the host computer.

4. Connect the Ethernet connector on the FPGA development board directly to the Ethernet adapter
on your host machine using the crossover Ethernet cable.

5. Turn on the power switch on the FPGA board.

Generate FPGA Data Capture Components

Launch the FPGA Data Capture Component Generator tool by executing this command in
MATLAB.

generateFPGADataCaptureIP

This example monitors two signals from the existing HDL code for the temperature sensor system: 16
bit temperature and 8 bit counter. The temperature signal is the reading of register 0x00 from
the XADC, which stores the converted raw temperature sensor. It has 16 bits, but only the 12-bit most
significant bits (MSBs) are the raw temperature sensor reading. The last signal counter is an 8 bit
free-running counter. To configure the data capture components to operate on these two signals over
a JTAG or Ethernet connection, follow these steps.

1. Add one row to the Ports table by clicking the Add button once.

2. Name the first signal to temperature and the second signal to counter.

3. Change the bit widths of the two signals to 16 and 8, respectively.

4. Select FPGA vendor as Xilinx.

5. Select Generated IP language as Verilog.

6. Select Sample depth as 1024. This is the number of samples of each signal that the data capture
tool returns to MATLAB each time a trigger is detected.

7. Select Max trigger stages as 2. This value is the maximum number of trigger stages that you can
add during data capture to provide multiple trigger conditions.

8. Select Connection type as one of these options.

• JTAG - To capture data over a JTAG connection

• Ethernet - To capture data over an Ethernet connection

 Capture Temperature Sensor Data from Xilinx FPGA Board Using FPGA Data Capture

8-3

9. Ethernet connection only: Set IP address to 192.168.0.2 and Port address to 50101. Select
Interface type as GMII. This is the type of Ethernet interface of your target FPGA development
board.

This figure shows these tool settings.

8 HDL Verifier Support Package for Xilinx FPGA Boards Examples

8-4

To generate the FPGA data capture component, click Generate. A report shows the results of the
generation.

Integrate FPGA Data Capture HDL IP

You must include the generated HDL IP core into the example FPGA design. You can copy the module
instance code from the generated report. In this example, we connect the generated HDL IP with the
temperature sensor output from XADC IP and an 8-bit free-running counter.

For JTAG Connection

If you are using ZedBoard, open the top.v file provided with this example. If you are using VC707,
open the top_vc707.v file provided with this example. Uncomment this code.

datacapture u0 (
 .clk(clk),
 .clk_enable(1'b1),
 .ready_to_capture(),
 .temperature(do_out),
 .counter(counter[7:0]));

Save the file you modified, compile the modified FPGA design, and create an FPGA programming file.

 Capture Temperature Sensor Data from Xilinx FPGA Board Using FPGA Data Capture

8-5

If you are using ZedBoard, execute this command in MATLAB.

system('vivado -mode batch -source data_capture_xadc_zedboard.tcl &')

If you are using VC707, execute this command in MATLAB.

system('vivado -mode batch -source data_capture_xadc_vc707.tcl &')

The above mentioned Tcl scripts that are included in this example perform these steps.

1. Create a new Vivado project.

2. Add example HDL files and the generated FPGA data capture HDL files to the project.

3. Compile the design.

4. Program the FPGA.

Wait until the Vivado process successfully finishes before going to the next step. This process takes
approximately 5 to 10 minutes.

For Ethernet Connection

1. Create a Vivado project for KC705 board by executing this command in MATLAB. This command
takes about one minute to run. When the execution completes, a Vivado project named
data_capture_xadc_kc705.xpr appears in your current directory.

system('vivado -mode batch -source create_project_kc705.tcl &')

2. Open the generated Vivado project in GUI mode by double-clicking the project in a file browser or
executing this command in MATLAB.

system('vivado data_capture_xadc_kc705.xpr &')

3. Navigate to the hdlsrc folder by executing this command in the Vivado Tcl console.

cd ./hdlsrc

4. Insert the Ethernet MAC Hub IP and FPGA data capture IP into Vivado project by executing this
command in the Vivado Tcl console. The FPGA Data Capture Component Generator tool
generates the insertEthernet.tcl script.

source ./insertEthernet.tcl

5. Complete the design by connecting IPs in the Vivado project, compile the design, and program the
FPGA by executing this command in the Vivado Tcl console.

source ../ethernet_data_capture_xadc_kc705.tcl

6. This figure shows the block diagram in Vivado.

8 HDL Verifier Support Package for Xilinx FPGA Boards Examples

8-6

Wait until the Vivado process successfully finishes before going to the next step. This process takes
approximately 5 to 10 minutes.

Capture Data

Navigate to the directory where the FPGA data capture component is generated in MATLAB.

cd hdlsrc

Launch the FPGA Data Capture tool. This tool is customized for your data capture signals.

launchDataCaptureApp

To start data capture click Capture Data. This action requests one buffer of captured data from the
FPGA. The default trigger setting is to capture immediately, without waiting for a trigger condition.

 Capture Temperature Sensor Data from Xilinx FPGA Board Using FPGA Data Capture

8-7

The captured data is saved into a structure, dataCaptureOut, in the MATLAB workspace. If you
have the DSP System Toolbox™ software, the captured data is also displayed as signal waveforms in
the Logic Analyzer tool.

The captured temperature sensor data is in raw format. The sensor data sheet gives the formula for
converting raw format data to Celsius units. Calculate and report the average temperature over all of
the samples returned.

CelsiusTemp = (double(dataCaptureOut.temperature))/(2^4)*503.975/4096 - 273.15;
sprintf('The FPGA Temperature is %fC\n',mean(CelsiusTemp))

Narrow Scope of Data Capture Using Triggers

To capture data from the FPGA around a particular event, you can configure trigger conditions in the
FPGA Data Capture app. For example, capture the temperature data only after a counter reaches a
certain value.

Select Number of trigger stages as 1. In the Trigger Stage 1 section, select Signal as counter.
Enable this trigger signal by clicking the + button. Select the corresponding trigger condition value

8 HDL Verifier Support Package for Xilinx FPGA Boards Examples

8-8

(Value) to 10. The trigger mode automatically changes to On trigger. This change tells the FPGA to
wait for the trigger condition before capturing and returning data. This figure shows these tool
settings.

Click Capture Data again. This time, the data capture IP returns 1024 samples, captured when it
detects that the counter equals 10.

To capture data from the FPGA for specific bits in the trigger value, irrespective of other bits, you can
configure the trigger condition with a bit-masked value.

For example, to capture the temperature data only when the seventh bit of the counter is 1, set the
trigger condition value (Value) to 0bX1XXXXXX as this figure shows.

 Capture Temperature Sensor Data from Xilinx FPGA Board Using FPGA Data Capture

8-9

Click Capture Data again. The data capture IP triggers to capture the temperature data for counter
values in the range [64, 127] and [192, 255].

Capture Multiple Occurrences of Event

To capture a recurring event from the FPGA, configure Number of capture windows in the FPGA
Data Capture tool.

For example, to capture the temperature data at eight different time slots, select Number of
capture windows as 8. This figure shows the updated tool settings.

8 HDL Verifier Support Package for Xilinx FPGA Boards Examples

8-10

Click Capture Data. The data capture IP returns eight windows of 128 samples each, which amounts
to a total sample depth of 1024.

Window depth = Sample depth/Number of capture windows;

The Logic Analyzer tool shows this result as eight occurrences of the trigger, with the temperature
logged for 128 samples each.

 Capture Temperature Sensor Data from Xilinx FPGA Board Using FPGA Data Capture

8-11

The signals Capture Window and Trigger Position indicate the corresponding window number
and trigger position, respectively.

Capture Data in Multiple Trigger Stages

This scenario explains how to capture data by providing a sequence of trigger conditions in multiple
trigger stages. For this action, you must select Number of trigger stages as a value greater than 1
in the FPGA Data Capture tool.

For example, to capture an temperature data when the counter value reaches from 0 to 5 in 5 clock
cycles:

1. Select Number of trigger stages as 2.

2. In the Trigger Stage 1 section, select Signal as counter. Enable this trigger signal by clicking
the + button. Select the corresponding trigger condition value (Value) as 0.

3. In Trigger Stage 2 section, select Signal as counter. Enable this trigger signal by clicking the +
button. Select the corresponding trigger condition value (Value) as 5. Select Trigger time out and
set it to 5.

This figure shows the updated tool settings.

8 HDL Verifier Support Package for Xilinx FPGA Boards Examples

8-12

Click Capture Data. The data capture IP captures 1024 samples when it detects the trigger
condition in trigger stage 2 within 5 clock cycles, preceded by the trigger condition detected in
trigger stage 1.

 Capture Temperature Sensor Data from Xilinx FPGA Board Using FPGA Data Capture

8-13

See Also
FPGA Data Capture Component Generator | FPGA Data Capture

More About
• “Data Capture Workflow” on page 6-2
• “Triggers” on page 6-7
• “Troubleshooting”

8 HDL Verifier Support Package for Xilinx FPGA Boards Examples

8-14

Access FPGA Memory Using JTAG-Based AXI Manager

Use JTAG-based AXI manager to access the memories connected to the FPGA. In the FPGA, there is a
Xilinx® DDR memory controller and BRAM controller exist for accessing the DDR memories and the
BRAM, respectively. These memory controllers provide an AXI4 subordinate interface for write and
read operations by other components in the FPGA. The JTAG-based AXI manager feature provides an
AXI manager component that you can use to access any AXI subordinate IPs in the FPGA. This
example demonstrates how to integrate AXI Manager IP into a Xilinx Vivado® project and how to
write and read data from the DDR memory and the BRAM using MATLAB®. This example simulates
the design using the Vivado simulator and then programs the FPGA and performs write and read
operations from the MATLAB console.

Requirements

• Xilinx Vivado Design Suite with supported version listed in “Supported EDA Tools and Hardware”
on page 1-6

• Artix®-7 35T Arty FPGA Evaluation Kit
• HDL Verifier™ Support Package for Xilinx FPGA Boards
• JTAG cable

Setup

1. Set up the FPGA board. Connect the Arty board to the host computer via USB-JTAG cable.

2. Prepare the example in MATLAB. Set up the Xilinx Vivado tool path. Use your own Xilinx Vivado
installation path when executing the command.

hdlsetuptoolpath('ToolName','Xilinx Vivado','ToolPath', ...
 'C:\Xilinx\Vivado\2020.2\bin\vivado.bat');

Create a Vivado project for this example. This project contains the IP Integrator block diagram and
constraint file for this example.

system('vivado -mode batch -source jtagAXIMcreateproject.tcl')

This command takes about one minute to run. When the execution completes, a Vivado project named
arty.xpr appears in your current directory.

3. Configure the Vivado project with a Vivado IP. To use the AXI Manager IP inside the Vivado IP
Integrator, add the folder that contains the IP to the Vivado IP repository path setting for the Vivado
project. Add the path to the project by executing this command in MATLAB.

setupAXIManagerForVivado arty.xpr

Open the generated Vivado project in GUI mode by double-clicking the project in a file browser or
executing this command in MATLAB.

system('vivado arty.xpr &')

4. Add AXI Manager IP to the FPGA design. In the Vivado GUI, open the block diagram design file
jtagAXIMdesign_1.bd. You can find the design file in the source file subwindow.

 Access FPGA Memory Using JTAG-Based AXI Manager

8-15

Set the address of mig_7series_0 (DDR controller) to 0x0000_0000 and axi_bram_ctrl_0
(BRAM controller) to 0xc000_0000 in the address editor as shown in this figure.

Alternatively, you can complete these steps by executing Tcl commands in Vivado.

source ./jtagAXIMmodifydesign.tcl

Write and Read Operations in Simulation

Click Run Simulation on the Vivado window to launch the simulation.

When simulation starts, the first few minutes are required to simulate the calibration process of the
DDR3.

After the calibration, these lines in the jtagAXIMtestbench.sv file writes and reads 256
consecutive words (32-bit) of data from the address 0 using Increment mode.

wdata = new[256];
for(integer i =0;i<256;i=i+1)
wdata[i] = i+1;
wrapper.jtagAXIMdesign_1_i.hdlverifier_axi_mana_0.inst.writememory ...
 (0,wdata,hdlverifier::HDLV_AXI_BURST_TYPE_INCR);
wrapper.jtagAXIMdesign_1_i.hdlverifier_axi_mana_0.inst.readmemory ...
 (0,256,hdlverifier::HDLV_AXI_BURST_TYPE_INCR,rdata);

These commands write and read 256 consecutive word of data from the address 0xc000_0000 using
Increment mode.

8 HDL Verifier Support Package for Xilinx FPGA Boards Examples

8-16

wdata = new[256];
for(integer i =0;i<256;i=i+1)
wdata[i] = i+1;
wrapper.jtagAXIMdesign_1_i.hdlverifier_axi_mana_0.inst.writememory ...
 (3221225472,wdata,hdlverifier::HDLV_AXI_BURST_TYPE_INCR);
wrapper.jtagAXIMdesign_1_i.hdlverifier_axi_mana_0.inst.readmemory ...
 (3221225472,256,hdlverifier::HDLV_AXI_BURST_TYPE_INCR,rdata);

Similarly, these lines show how to write a single word of value 100 into memory at address 0 and read
it back.

wdata = new[1];
wdata[0] = 100;
wrapper.jtagAXIMdesign_1_i.hdlverifier_axi_mana_0.inst.writememory ...
 (0,wdata,hdlverifier::HDLV_AXI_BURST_TYPE_FIXED);
wrapper.jtagAXIMdesign_1_i.hdlverifier_axi_mana_0.inst.readmemory ...
 (0,1,hdlverifier::HDLV_AXI_BURST_TYPE_FIXED,rdata);

Generate FPGA Bitstream and Program FPGA

Click Generate Bitstream on the Vivado window to generate the FPGA programming file. Vivado
might prompt you to save the project before proceeding to the next step. Generating the bitstream
file takes about 5 to 10 minutes for Vivado to generate the bitstream file.

After Vivado generates the bitstream, program the FPGA by executing this command in MATLAB.

filProgramFPGA('Xilinx Vivado','arty.runs\impl_1\design_1.bit',1)

Write and Read Operations to FPGA

After programming the FPGA, you can write and read from the AXI subordinates connected to the AXI
Manager IP. This example writes data to the DDR memory connected to the FPGA and the BRAM and
then retrieves data into MATLAB.

Create the AXI manager object in MATLAB to write and read from the DDR memory. Write single
location and then read data from the same location. In this case, the read data is 100.

h = aximanager('Xilinx');
writememory(h,'00000000',100);
readmemory(h,'00000000',1);

Use any address in the range form c000_0000 to c000_1FFF to write and read from the BRAM. Write
single location and then read data from the same location. In this case, the read data is 1000.

writememory(h,'c0000000',1000);
readmemory(h,'c0000000',1);

See Also
aximanager | writememory | readmemory

More About
• “Set Up AXI Manager” on page 3-2
• “Troubleshooting”

 Access FPGA Memory Using JTAG-Based AXI Manager

8-17

Perform Large Matrix Multiplication on FPGA External DDR
Memory Using Ethernet-Based AXI Manager

This example shows how to use Ethernet-based AXI manager to access external memory connected to
an FPGA. This example also shows how to:

1 Generate an HDL IP core with an interface.
2 Access large matrices from the external DDR3 memory on the Xilinx® Kintex®-7 KC705 board

using the Ethernet-based AXI manager interface.
3 Perform matrix vector multiplication in the HDL IP core and write the output result back to the

DDR3 memory using the Ethernet-based AXI manager interface.

Requirements

To run this example, you must have this software and hardware installed and set up.

• Xilinx Vivado® Design Suite, with a supported version listed in the “Supported EDA Tools and
Hardware” on page 1-6

• Xilinx Kintex-7 KC705 Evaluation Kit
• JTAG cable and Ethernet cable for connecting to KC705 FPGA
• HDL Coder™ Support Package for Xilinx FPGA Boards
• HDL Verifier™ Support Package for Xilinx FPGA Boards

Introduction

This example models a matrix vector multiplication algorithm and implements the algorithm on the
Xilinx Kintex-7 KC705 board. Large matrices might not map efficiently to block RAMs on the FPGA
fabric. Instead, store the matrices in the external DDR3 memory on the FPGA board. The Ethernet-
based AXI manager interface can access the data by communicating with vendor-provided memory
interface IP cores that interface with the DDR3 memory. This capability enables you to model
algorithms that involve large data processing and requires high-throughput DDR access, such as
matrix operations and computer vision algorithms.

The matrix vector multiplication module supports fixed-point matrix vector multiplication, with a
configurable matrix size ranging from 2 to 4000. The size of the matrix is run-time configurable
through the AXI4 accessible register.

Open the model by entering this command at the MATLAB® command prompt.

modelname = 'hdlcoder_external_memory_axi_master';
open_system(modelname);

8 HDL Verifier Support Package for Xilinx FPGA Boards Examples

8-18

Model Algorithm

This example model includes an FPGA implementable design under test (DUT) block, a DDR functional
behavior block, and a test environment to drive inputs and verify the expected outputs.

The DUT subsystem contains an AXI4 Master read and write controller along with a matrix vector
multiplication module. Using the AXI4 Master interface, the DUT subsystem reads data from the
external DDR3 memory, feeds the data into the Matrix_Vector_Multiplication module, and
then writes the output data to the external DDR3 memory using the Ethernet-based AXI manager
interface. The DUT module has several parameter ports. These ports are mapped to AXI4 accessible
registers, so you can adjust these parameters from MATLAB even after you implement the design
onto the FPGA.

The matrix_mul_on port controls whether to run the Matrix_Vector_Multiplication module.
When the input to matrix_mul_on is true, the DUT subsystem performs matrix vector multiplication,
as described earlier in this example. When the input to matrix_mul_on is false, the DUT subsystem
performs a data loop back mode. In this mode, the DUT subsystem reads data from the external DDR3
memory, writes it into the Internal_Memory module, and then writes the same data back to the
external DDR3 memory. The data loop back mode is a way to verify the functionality of the AXI4
Master external DDR3 memory access.

Also inside the DUT subsystem, the Matrix_Vector_Multiplication module uses a multiply-add
block to implement a streaming dot-product computation for the inner-product of the matrix vector
multiplication.

If A is a matrix of size N-by-N and B is a vector of size N-by-1, then the matrix vector multiplication
output is Z = A x B, which is of size N-by-1.

 Perform Large Matrix Multiplication on FPGA External DDR Memory Using Ethernet-Based AXI Manager

8-19

The first N values from the DDR are treated as the N-by-1 size vector, followed by N-by-N size matrix
data. The first N values (vector data) are stored into a RAM. From N+1 values onward, data is
directly streamed as matrix data. Vector data is read from the Vector_RAM in parallel. Both matrix
and vector inputs are fed into the Matrix_mul_top subsystem. The first matrix output is available
after N clock cycles and is stored in output RAM. Again, the vector RAM read address is reinitialized
to 0 and starts reading the same vector data corresponding to the new matrix stream. This operation
is repeated for all of the rows of the matrix.

This diagram shows the architecture of the Matrix_Vector_Multiplication module.

Generate HDL IP core with Ethernet-Based AXI Manager

Start the HDL Workflow Advisor and use the IP Core Generation workflow to deploy this design on
the Xilinx Kintex-7 hardware.

1. Set up the Xilinx Vivado synthesis tool path by entering this command at the MATLAB command
prompt. Use your own Vivado installation path when you run the command.

hdlsetuptoolpath('ToolName','Xilinx Vivado', ...
 'ToolPath','C:\Xilinx\Vivado\2020.2\bin\vivado.bat')

2. Start the HDL Workflow Advisor from the DUT subsystem
hdlcoder_external_memory_axi_master/DUT. The target interface settings are saved on the
model. In step 1.1, the target workflow is the IP Core Generation workflow and the target platform is
the Xilinx Kintex-7 KC705 development board.

3. In step 1.2, select the Reference design as External DDR3 Memory Access with Ethernet
based AXI Manager.

8 HDL Verifier Support Package for Xilinx FPGA Boards Examples

8-20

4. Review the target platform interface table settings.

In this example, the input parameter ports, such as matrix_mul_on, matrix_size, burst_len,
burst_from_ddr, and burst start, are mapped to the AXI4 interface. The HDL Coder product
generates AXI4 interface accessible registers for these ports. You can use MATLAB to tune these
parameters at run-time when the design is running on the FPGA board.

The Ethernet-based AXI manager interface has separate read and write channels. The read channel
ports, such as axim_rd_data, axim_rd_s2m, and axim_rd_m2s, are mapped to the AXI4 Master
Read interface. The write channel ports, such as axim_wr_data, axim_wr_s2m, and axim_wr_m2s,
are mapped to the AXI4 Master Write interface.

 Perform Large Matrix Multiplication on FPGA External DDR Memory Using Ethernet-Based AXI Manager

8-21

5. Right-click step 3.2, Generate RTL Code and IP Core, and select Run to Selected Task to
generate the IP core. You can find the register address mapping and other documentation for the IP
core in the generated IP Core Report.

6. Right-click step 4.1, Create Project, and select Run This Task to generate the Vivado project.
During the project creation, the generated DUT IP core is integrated into the External DDR3 Memory
Access with Ethernet based AXI Manager reference design. This reference design comprises of a
Xilinx memory interface generator (MIG) IP to communicate with the on-board external DDR3
memory on the KC705 platform. The AXI Manager IP is also added to enable MATLAB to control the
DUT IP and to initialize and verify the DDR memory content.

You can view the generated Vivado project by clicking on the project link in the result window and
inspect the design.

The Ethernet-based AXI manager IP has a default target IP address of 192.168.0.2 and default UDP
port value of 50101. You can change these values by double-clicking the ethernet_mac_hub IP in
the Vivado block design.

7. Right-click step 4.3, Program Target Device, and select Run to Selected Task to generate the
bitstream and program the device.

Run FPGA Implementation on Kintex-7 Hardware

Run the FPGA implementation and verify the hardware result by running this script in MATLAB.

hdlcoder_external_memory_axi_master_hw_run

This script first initializes the Matrix_Size to 500, which means a 500-by-500 matrix. You can adjust
Matrix_Size up to 4000.

The script then configures the AXI4 Master read and write channel base addresses. These addresses
define the base address that the DUT reads from and writes to external DDR memory. In this script,
the DUT reads from base address '40000000' and writes to base address '50000000'.

8 HDL Verifier Support Package for Xilinx FPGA Boards Examples

8-22

The AXI manager feature is used to initialize the external DDR3 memory with input vector and matrix
data and to clear the output DDR memory location.

The DUT calculation is started by controlling the AXI4 accessible registers. The DUT IP core reads
input data from the DDR memory, performs matrix vector multiplication, and then writes the result
back to the DDR memory.

Finally, the output result is read back to MATLAB and compared with the expected value. In this way,
the hardware results are verified in MATLAB.

See Also

More About
• “Set Up AXI Manager” on page 3-2
• “Ethernet AXI Manager” on page 3-10
• “Troubleshooting”

 Perform Large Matrix Multiplication on FPGA External DDR Memory Using Ethernet-Based AXI Manager

8-23

Access FPGA Memory Using Ethernet-Based AXI Manager

This example shows how to use Ethernet-based AXI manager to access internal and external
memories of FPGA through different UDP ports. In the FPGA, Xilinx® DDR memory controller and
BRAM controller exist for accessing the DDR memories and the BRAM, respectively. These memory
controllers provide an AXI4 slave interface for write and read operations by other components in the
FPGA. Ethernet-based AXI manager provides an AXI manager component that you can use to access
AXI subordinate IPs in the FPGA. This example demonstrates how to integrate Ethernet-based AXI
manager into a Xilinx Vivado® project and how to write and read from the DDR memory and the
BRAM using MATLAB®.

Requirements

• Xilinx Vivado Design Suite, with supported version listed in “Supported EDA Tools and Hardware”
on page 1-6

• Xilinx Kintex®-7 KC705 Evaluation Kit
• HDL Verifier™ Support Package for Xilinx FPGA Boards
• Ethernet cable and JTAG cable

Setup

1. Set up the FPGA board. Connect the Xilinx KC705 board to the host computer via Ethernet and
JTAG cables. The JTAG cable is used for programming the device.

2. Prepare the example in MATLAB. Set up the Xilinx Vivado tool path. Use your own Xilinx Vivado
installation path when executing the command.

 hdlsetuptoolpath('ToolName','Xilinx Vivado', ...
 'ToolPath','C:\Xilinx\Vivado\2020.2\bin\vivado.bat');

Create a Vivado project for this example. This project contains the IP Integrator block diagram and
constraint file.

 system('vivado -mode batch -source createProjectEthAxim.tcl')

This command takes about one minute to run. When the execution completes, a Vivado project named
ethernetaximaster.xpr appears in your current directory.

3. Configure the Vivado project with a Vivado IP. To use the UDP AXI Manager IP inside the Vivado IP
Integrator, add the folder that contains the IP to the IP repository path setting for the Vivado project.
Add the path to the project by executing this command in MATLAB.

 setupAXIManagerForVivado ethernetaximaster.xpr

Open the generated Vivado project in GUI mode by double-clicking the project in a file browser or
executing this command in MATLAB.

 system('vivado ethernetaximaster.xpr &')

4. In the Vivado GUI, open the block diagram design file design_1.bd. You can find the block
diagram in the source file subwindow. Add the Ethernet MAC Hub GMII and UDP AXI Manager IPs to
the FPGA design. The Ethernet MAC Hub GMII IP has a default target IP Address of 192.168.0.2 and
default UDP port value of 50101. Change the number of AXI Stream channels of Ethernet MAC Hub

8 HDL Verifier Support Package for Xilinx FPGA Boards Examples

8-24

to 2. You can change these values by double-clicking the ethernet_mac_hub_gmii_0 IP in the
block design. Modify the ethernet_mac_hub_gmii_0 parameters as shown in this figure.

Make the connections among IPs as shown in this figure. You can access DDR memory and BRAM
through UDP ports 50101 and 50102, respectively.

 Access FPGA Memory Using Ethernet-Based AXI Manager

8-25

Set the address of mig_7series_0 (DDR controller) and axi_bram_ctrl_0 (BRAM controller) to
0x0000_0000 and 0x1000_0000, respectively, as shown in this figure.

Alternatively, you can complete the above setup steps by executing Tcl commands in Vivado.

source ./modifyDesignEthAxim.tcl

5. Generate the FPGA programming file and program the FPGA. Click Generate Bitstream on the
Vivado window to generate the FPGA programming file. Vivado might prompt you to save the project
before proceeding to the next step. Generating the bitstream file takes about 5 to 10 minutes for
Vivado to generate the bitstream file.

After Vivado generates the bitstream, verify that FPGA board is connected with Digilent® JTAG and
Ethernet cables. Program the FPGA by executing this command in MATLAB.

 filProgramFPGA('Xilinx Vivado','ethernetaximaster.runs\impl_1\design_1.bit',1)

8 HDL Verifier Support Package for Xilinx FPGA Boards Examples

8-26

6. Make sure that the host network connection must be on the same subnet as the hardware board.
For this example, set the host network IP address to 192.168.0.x, where x is any number in the range
1 through 255, apart from 2. 192.168.0.2 is the IP address of the hardware board in this example.

FPGA Write and Read Operations

After programming the FPGA, you can write and read from the AXI subordinates that are connected
to the UDP AXI Manager IP. This example writes data to the DDR memory connected to the FPGA and
the BRAM and then retrieves data into MATLAB.

Create the AXI manager object in MATLAB to write and read from the DDR memory. The default port
address is 50101. Write single location and then read data from the same location. In this case, the
read back data is 100.

 hDDR = aximanager('Xilinx','interface','UDP', ...
 'DeviceAddress','192.168.0.2');
 writememory(hDDR,'00000000',100);
 readmemory(hDDR,'00000000',1);

Release the AXI manager object to open communication through other UDP ports.

 release(hDDR);

Create a new AXI manager object with a different UDP port to write and read from the BRAM. Write
single location and then read data from the same location. In this case, the read back data is 1000.

 hBRAM = aximanager('Xilinx','interface','UDP', ...
 'DeviceAddress','192.168.0.2','Port','50102');
 writememory(hBRAM,'10000000',1000);
 readmemory(hBRAM,'10000000',1);
 release(hBRAM);

See Also
aximanager | writememory | readmemory | release

More About
• “Set Up AXI Manager” on page 3-2
• “Ethernet AXI Manager” on page 3-10
• “Troubleshooting”

 Access FPGA Memory Using Ethernet-Based AXI Manager

8-27

Access FPGA External Memory Using AXI Manager over PCI
Express

This example shows how to use AXI manager over PCI Express® (PCIe) to access the external
memory connected to an FPGA. The FPGA includes a Xilinx® DDR memory controller for accessing
the DDR memory. This memory controller provides an AXI4 slave interface for write and read
operations by other components in the FPGA. The PCIe AXI manager feature provides an AXI
manager object that you can use to access any memory mapped location in the FPGA. This example
shows how to integrate PCIe AXI manager into a Xilinx Vivado® project and write and read data from
the DDR memory using MATLAB®.

Requirements

• Xilinx Vivado Design Suite, with supported version listed in “Supported EDA Tools and Hardware”
on page 1-6

• Xilinx Kintex® UltraScale+ FPGA KCU116 Evaluation Kit
• HDL Verifier™ Support Package for Xilinx FPGA Boards
• Host machine (PC) with PCIe slot
• USB-JTAG cable

Setup

1. Set up the FPGA board. Connect the Xilinx KCU116 board to the host computer via PCIe and JTAG
cables. The JTAG cable is used for programming the device.

2. Prepare the example in MATLAB. Set up the Xilinx Vivado tool path. Use your own Xilinx Vivado
installation path when executing the command.

hdlsetuptoolpath('ToolName','Xilinx Vivado', ...
 'ToolPath','C:\Xilinx\Vivado\2020.2\bin\vivado.bat');

Create a Vivado project for this example. The following MATLAB command creates a Vivado project
named pcieaximaster.xpr and contains the IP Integrator block diagram and constraint files.

system('vivado -mode batch -source pcieAXIMcreateproject.tcl')

3. Configure the Vivado project with a Vivado IP. To use the PCIe as AXI Manager IP inside the Vivado
IP Integrator, add the folder that contains the IP to the IP repository path setting for the Vivado
project. Add the path to the project by executing this command in MATLAB.

setupAXIManagerForVivado pcieaximaster.xpr

Open the generated Vivado project in GUI mode by double-clicking the project in a file browser or by
executing this command in MATLAB.

system('vivado pcieaximaster.xpr &')

4. Add PCIe AXI Manager IP to the FPGA design. In the Vivado GUI, open the block diagram design
file pcieAXIMdesign_1.bd. You can find the design in the source file subwindow.

8 HDL Verifier Support Package for Xilinx FPGA Boards Examples

8-28

Set the address of xdma_0 (AXI Bridge Subsystem for PCI Express) and ddr4_0 (memory controller)
as shown in this figure.

Alternatively, you can complete the above setup steps by executing Tcl commands in Vivado.

source ./pcieAXIMmodifydesign.tcl

5. Generate the FPGA programming file and program the FPGA. Click Generate Bitstream on the
Vivado window to generate the FPGA programming file. Vivado might prompt you to save the project
before proceeding to the next step. Generating the bitstream file takes about 5 to 10 minutes for
Vivado to generate the bitstream file.

After Vivado generates the bitstream, program the FPGA by executing this command in MATLAB.

 Access FPGA External Memory Using AXI Manager over PCI Express

8-29

filProgramFPGA('Xilinx Vivado','pcieaximaster.runs\impl_1\pcieAXIMdesign_1.bit',1)

6. Reboot the host machine after programming the FPGA.

FPGA Write and Read Operations

Once the design is running on the FPGA board, you can write and read from the AXI subordinates
that are connected to the PCIe AXI Manager IP. This example writes data to the DDR memory
connected to the FPGA and then retrieves data into MATLAB.

Create the AXI manager object in MATLAB.

h = aximanager('Xilinx','interface','pcie');

Write and read from the memory locations on the FPGA. The following two lines use the AXI manager
object h to write 100 to address 0 and then read from address 0 of the DDR memory.

writememory(h,0,100) readmemory(h,0,1)

See Also
aximanager | writememory | readmemory | release

More About
• “Set Up AXI Manager” on page 3-2
• “PCI Express AXI Manager” on page 3-6
• “Troubleshooting”

8 HDL Verifier Support Package for Xilinx FPGA Boards Examples

8-30

Leverage Built-In Ethernet on Zynq to Perform Memory Access
Using AXI Manager

This example shows how to use an Ethernet-based AXI manager to access the external memory and
FPGA IPs on the Xilinx® Zynq®-7000 ZC706 board over Ethernet. In Xilinx Zynq-based designs,
MATLAB® acts as an AXI manager and communicates with the external memory controller and FPGA
IPs through an AXI Lite interface by using the user datagram protocol (UDP) server in the processing
system (PS). This block diagram shows the communication between a host and a Xilinx Zynq-7000
board over Ethernet.

The example demonstrates operations as outlined in these steps and this figure.

1 Write an ASCII image of size 24-by-64 to Region1.
2 Configure Image Rotation IP to read the image from Region1, rotate the image, and write the

rotated image to Region2.
3 Read the image from Region2.

 Leverage Built-In Ethernet on Zynq to Perform Memory Access Using AXI Manager

8-31

Hardware and Software Requirements

To run this example, you must have this software and hardware installed and set up.

• Xilinx Vivado® Design Suite, with a supported version listed in the “HDL Language Support and
Supported Third-Party Tools and Hardware” (HDL Coder)

• Xilinx Zynq ZC706 evaluation kit
• Ethernet cable to connect the ZC706 FPGA
• HDL Coder™ Support Package for Xilinx Zynq Platform
• HDL Verifier™ Support Package for Xilinx FPGA Boards
• SD card

Setup

Step 1: Set up the FPGA board

Verify that the Xilinx Zynq-7000 ZC706 board is connected to the host computer through an Ethernet
cable. The Ethernet cable is used to program and communicate with the board.

Step 2: Set up the SD card

For details, see steps 1 through 4 in “Ethernet AXI Manager for Xilinx Zynq SoC Devices” on page 3-
16.

Step 3: Create a Vivado project

Set up the Xilinx Vivado tool path. Use your Xilinx Vivado installation path when executing the
command in MATLAB. For example, enter this command at the MATLAB command prompt.

hdlsetuptoolpath('ToolName','Xilinx Vivado','ToolPath', ...
 'C:\Xilinx\Vivado\2019.2-mw-0\Win\Vivado\2020.2\bin');

Create a folder outside of the scope of your MATLAB installation folder into which you can copy the
example files. The folder must be writable. This example assumes that the folder is located at
C:\MyTests.

Unzip the imagerotation_ip.zip file to add the image rotation IP to the User Repository in your
Vivado project.

unzip(fullfile('ipcore','imagerotation_ip_v1_0.zip'), ...
 fullfile('ipcore','imagerotation_ip_v1_0'));

Create a Vivado project using this command. This project contains an IP Integrator block diagram
and a constraint file.

system('vivado -mode batch -source createproject.tcl')

This process completes in about a minute. A Vivado project named ethernetaximasterzynq.xpr
is created in your current directory.

Open the generated Vivado project in GUI mode by double-clicking the project in a file browser or by
entering this command at the MATLAB command prompt.

system('vivado ethernetaximasterzynq.xpr &')

8 HDL Verifier Support Package for Xilinx FPGA Boards Examples

8-32

Step 4: Open the block diagram and Address Editor window

In the Vivado GUI, open the block diagram design file design_1.bd. You can find this file in the
source file subwindow.

Open the Address Editor window to view the address mapping of the mig_7series_0 (memory
controller) and imagerotation_ip IPs.

These are the imagerotation_ip registers and their corresponding physical locations.

• IP Core reset register ['40000000'] — Write 1 to reset the image rotation IP.

 Leverage Built-In Ethernet on Zynq to Perform Memory Access Using AXI Manager

8-33

• IP Core enable register ['40000004'] — Write 1 to enable the image rotation IP.
• Read base address register ['40000008'] — Contains starting address of Region1 (for example,

0X60000000).
• Write base address register ['4000000C'] — Contains starting address of Region2 (for example,

0X62000000).
• Start register ['40000100'] — Write 1 to start the image rotation operation.

Note: To use the pregenerated bitstream and the device tree blob (DTB) file copied to the current
working directory, skip steps 5 and 6.

Step 5: Generate the FPGA programming file

To generate the FPGA programming file, click Generate Bitstream in the Vivado window. Vivado
might prompt you to save the project before moving forward. Vivado generates the bitstream file in
about 5 to 10 minutes.

Step 6: Generate the DTB file

To compile a DTB file, you need a device tree compiler (DTC) on a Linux machine. If a DTC is not
installed, execute these commands in a Linux console window.

sudo apt-get update -y

sudo apt-get install -y device-tree-compiler

After successful installation of a DTC, to generate a DTB file, open the board-specific DTS file to
provide the FPGA memory information as the code in this figure shows.

Alternatively, you can use the DTS file provided for this example: C:\MyTests
\devicetree_zc706_image_rotation.dts.

Generate a DTB file from the DTS file by executing this command in a Linux console window.

dtc -I dts -O dtb devicetree_zc706_image_rotation.dts -o
devicetree_zc706_image_rotation.dtb

Step 7: Program the FPGA

Program the FPGA in MATLAB by entering this command at the MATLAB command prompt.

8 HDL Verifier Support Package for Xilinx FPGA Boards Examples

8-34

loadBitstream('ZC706','ethernetaximaster_zynq_zc706.bit', ...
 'devicetree_zc706_image_rotation.dtb');

Run Design

To run the design, run the ethernetaximasterzynq_tb.m file from the current working folder at
MATLAB command prompt.

ethernetaximasterzynq_tb

The script runs the design from MATLAB by creating an AXI manager object and plots the input and
output images as these figures show.

 Leverage Built-In Ethernet on Zynq to Perform Memory Access Using AXI Manager

8-35

See Also

More About
• “Set Up AXI Manager” on page 3-2
• “Ethernet AXI Manager” on page 3-10
• “Troubleshooting”

8 HDL Verifier Support Package for Xilinx FPGA Boards Examples

8-36

Access DUT Registers on Xilinx Pure FPGA Board Using IP Core
Generation Workflow

This example shows how to use the HDL Coder™ IP core generation workflow to develop reference
designs for Xilinx® parts that do not use an embedded ARM® processor present but that still utilize
the HDL Coder generated AXI interface to control the design under test (DUT). This example uses the
HDL Verifier™ AXI Manager IP to access the HDL Coder generated DUT registers from MATLAB®.
Alternatively, you can use the Xilinx JTAG AXI Master to access the DUT registers using Vivado® Tcl
console by writing Tcl commands. For the Xilinx JTAG AXI Master, you must create a custom
reference design. The FPGA design is implemented on the Xilinx Kintex®-7 KC705 board.

Requirements

• Xilinx Vivado Design Suite, with a supported version listed in “HDL Language Support and
Supported Third-Party Tools and Hardware” (HDL Coder)

• Xilinx Kintex-7 KC705 development board
• HDL Coder Support Package for Xilinx FPGA Boards
• HDL Verifier Support Package for Xilinx FPGA Boards

Xilinx Kintex-7 KC705 Development Board

This figure shows the Xilinx Kintex-7 KC705 development board.

Example Reference Designs

Designs that can benefit from using the HDL Coder IP core generation workflow without using either
an embedded ARM processor or an Embedded Coder™ support package but still leverage the HDL
Coder generated AXI4-Lite registers can include one of these IP sets.

• HDL Verifier AXI Manager + HDL Coder IP Core
• Xilinx JTAG Master + HDL Coder IP Core
• MicroBlaze™ + HDL Coder IP Core

 Access DUT Registers on Xilinx Pure FPGA Board Using IP Core Generation Workflow

8-37

• PCIe Endpoint + HDL Coder IP Core

This example includes two reference designs.

• The Default System reference design uses MathWorks® IP and a MATLAB command line interface
for issuing read and write commands. To use this design, you must have the HDL Verifier product.

• The Xilinx JTAG to AXI Master reference design uses Vivado IP for the JTAG to AXI Master and
requires using the Vivado Tcl console to issue read and write commands.

The two reference designs differ by only the JTAG manager IP that they use, as this figure shows.

HDL Verifier AXI Manager Reference Design

In the IP core generation workflow of the HDL Workflow Advisor, in the Set Target Reference
Design step, set the Insert AXI Manager (HDL Verifier required) parameter to an interface that
communicates between your host machine and the target hardware. This option adds AXI manager IP
for your interface automatically into the reference design and connects the added IP to the DUT IP
using the AXI4-slave interface. The next section details the steps to auto-insert the JTAG AXI Manager
IP in the reference design.

Execute IP Core Workflow

8 HDL Verifier Support Package for Xilinx FPGA Boards Examples

8-38

Follow these steps to execute the IP core workflow for the Default System reference design, which
uses JTAG AXI Manager IP. Using this reference design, you can generate an HDL IP core that blinks
LEDs on the KC705 board. To generate an HDL IP core, follow these steps.

1. Set up the Xilinx Vivado tool path by executing this command in MATLAB. Use your own Xilinx
Vivado installation path when executing the command.

hdlsetuptoolpath('ToolName','Xilinx Vivado','ToolPath', ...
 'C:\Xilinx\Vivado\2020.2\bin\vivado.bat');

2. Open the Simulink model that implements LED blinking by executing this command in MATLAB.

open_system('hdlcoder_led_blinking')

3. Launch HDL Workflow Advisor from the hdlcoder_led_blinking/led_counter subsystem by
right-clicking the led_counter subsystem and selecting HDL Code followed by HDL Workflow
Advisor.

4. In step 1.1, set Target workflow to IP Core Generation and Target platform to Xilinx
Kintex-7 KC705 development board. Click Run This Task.

5. In step 1.2, set Reference design to Default System. Under Reference design parameters,
set Insert AXI Manager (HDL Verifier required) to JTAG. Click Run This Task.

 Access DUT Registers on Xilinx Pure FPGA Board Using IP Core Generation Workflow

8-39

6. In step 1.3, set the interface of the Blink_frequency, Blink_direction, and Read_back ports to
AXI4-Lite. Set the interface of the LED port to LEDs General Purpose [0:7].

8 HDL Verifier Support Package for Xilinx FPGA Boards Examples

8-40

7. Run the remaining steps in the workflow to generate a bitstream and program the target device.

Unlike the Zynq-based reference design, a Generate Software Interface Model task does not exist,
as this figure shows.

 Access DUT Registers on Xilinx Pure FPGA Board Using IP Core Generation Workflow

8-41

Determine Addresses from IP Core Report

The base address for an HDL Coder IP core is defined as 0x40000000 for the Default System
reference design, which uses the AXI Manager IP. You can see address setting in the generated IP
core report as shown in this figure.

8 HDL Verifier Support Package for Xilinx FPGA Boards Examples

8-42

The IP core report register address mapping table shows the offsets.

 Access DUT Registers on Xilinx Pure FPGA Board Using IP Core Generation Workflow

8-43

HDL Verifier Command Line Interface

If you have the HDL Verifier support package for Xilinx FPGA boards, select the AXI Manager
reference design, then you can use MATLAB command line interface to access the IP core that is
generated by the HDL Coder product.

8 HDL Verifier Support Package for Xilinx FPGA Boards Examples

8-44

To write and read from the DDR memory, follow these steps.

1. Create an AXI manager object.

h = aximanager('Xilinx')

2. Issue a write command. For example, disable the DUT.

h.writememory('40000004',0)

3. Re-enable the DUT.

h.writememory('40000004',1)

4. Issue a read command. For example, read the current counter value.

h.readmemory('40000108',1)

5. Delete the object to free up the JTAG resource. If you do not delete the object, other JTAG
operations, such as programming the FPGA, fail.

delete(h)

Xilinx JTAG to AXI Master Reference Design

Create a custom reference design to use the Xilinx JTAG to AXI Master IP in the reference design, and
then add the reference design files to the MATLAB path using the addpath command.

Access the HDL Coder IP core registers using the Xilinx JTAG to AXI Master IP by using the base
address that is defined in reference design plugin file.

Vivado Tcl Commands for AXI Read and Write

 Access DUT Registers on Xilinx Pure FPGA Board Using IP Core Generation Workflow

8-45

This example uses the standalone Vivado Tcl console for basic commands to issue reads and writes.
You can use these commands to open the JTAG device and set up an "enable" and "disable" write to
the DUT. You can enter these commands directly into the Vivado Tcl console or save them in a Tcl file
and source them later. For simplicity, copy these Tcl commands into a file open_jtag.tcl.

Open connection to the JTAG Master
open_hw
connect_hw_server
open_hw_target
refresh_hw_device [lindex [get_hw_devices] 0]

Create some reads/writes
create_hw_axi_txn wr_enable [get_hw_axis hw_axi_1] ...
 -address 44a0_0004 -data 0000_0001 -type write
create_hw_axi_txn wr_disable [get_hw_axis hw_axi_1] ...
 -address 44a0_0004 -data 0000_0000 -type write

Launch the Vivado Tcl console, sourcing the file you just created.

system('vivado -mode tcl -source open_jtag.tcl&')

When you are done using the JTAG Master, close the connection by using these Tcl commands.

8 HDL Verifier Support Package for Xilinx FPGA Boards Examples

8-46

Close and disconnect from the JTAG Master
close_hw_target;
disconnect_hw_server;

Summary

You can use the JTAG AXI Manager IP to interface with HDL Coder IP core registers in systems that
do not have an embedded ARM processor, such as the Kintex-7. You can use this IP as a first step to
debug standalone HDL Coder IP cores, prior to hand coding software for soft processors, (such as
MicroBlaze), or as a way to tune parameters on a running system.

See Also
aximanager | writememory | readmemory

More About
• “Set Up AXI Manager” on page 3-2
• “Getting Started with the HDL Workflow Advisor” (HDL Coder)
• “Custom IP Core Generation” (HDL Coder)
• “Troubleshooting”

 Access DUT Registers on Xilinx Pure FPGA Board Using IP Core Generation Workflow

8-47

Verify OFDM Transmit and Receive using FPGA Data Capture

This example shows how to verify a wireless HDL IP that you generate in “OFDM Transmit and
Receive Using Analog Devices AD9361/AD9364” (Communications Toolbox Support Package for Xilinx
Zynq-Based Radio). The example also shows how to monitor and analyze the internal signals of an IP
core using FPGA data capture on real hardware.

You use the FPGA Data Capture tool to capture the hardware signals over JTAG for debugging
analysis. FPGA data capture offers many capabilities to capture signals of interest using appropriate
trigger and capture conditions. You validate the behavior of the whdlOFDMRx Model subsystem in
the zynqRadioHWSWOFDMAD9361AD9364SL model by performing these steps.

• Use capture control to capture valid data constellation points.
• Use trigger conditions and multiple windows to capture header constellation points for frames

with a failed CRC.
• Use trigger conditions and the trigger position to capture synchronizing sequence (SS) correlation

data for the peak search and validate the timing offset.

Requirements

To run this example, you need a Xilinx Zynq ZC706 evaluation kit and FMCOMMS2/3/4 radio
transmitter hardware.

Hardware Setup

• Follow the steps in “Guided Host-Radio Hardware Setup” (Communications Toolbox Support
Package for Xilinx Zynq-Based Radio) to configure the host computer and ZC706 board with
FMCOMMS2/3/4 radio hardware.

• Use the JTAG cable to connect the board to the host computer.

Simulink Model Setup

1 Open the zynqRadioHWSWOFDMAD9361AD9364SL model.
2 Mark the signals that you want to analyze through data capture as test points. To mark a signal

as a test point, right-click the signal and then click Properties. On the Signal Properties dialog
box, on the Logging and accessibility tab, select the Test point checkbox, as this figure shows.

8 HDL Verifier Support Package for Xilinx FPGA Boards Examples

8-48

Alternatively, use the hOFDMTxRxAddTestPoints helper function to mark the required test points
and save the model as zynqRadioHWSWOFDMAD9361AD9364SLVerify. The function is attached to
the example as a supporting file.

hOFDMTxRxAddTestPoints

This figure shows the test points marked in the whdlOFDMRx Model subsystem for capturing the
header and data constellation points.

 Verify OFDM Transmit and Receive using FPGA Data Capture

8-49

This figure shows the test points marked in the Sync Signal Search subsystem for capturing the
SS correlation and timing offset signals.

Generate HDL IP Core with Data Capture and Load Bitstream

• Start the targeting workflow by right-clicking the OFDM HDL subsystem and selecting HDL Code
> HDL Workflow Advisor.

• In step 1.1, set Target workflow to IP Core Generation and Target platform to ZC706 and
FMCOMMS2/3/4.

• In step 1.2, set Reference design to Receive and Transmit path. For this example, you can
use the default values of the reference design parameters.

• In step 1.3, select Enable HDL DUT output port generation for test points to update the
interface table with all the test points. Then, in the Target platform interface table, map the
test point signals to FPGA Data Capture. For information about mapping IO ports, see “OFDM
Transmit and Receive Using Analog Devices AD9361/AD9364” (Communications Toolbox Support
Package for Xilinx Zynq-Based Radio).

8 HDL Verifier Support Package for Xilinx FPGA Boards Examples

8-50

• Run step 1.4 to step 3.1 by following the Generate IP Core section of the “OFDM Transmit and
Receive Using Analog Devices AD9361/AD9364” (Communications Toolbox Support Package for
Xilinx Zynq-Based Radio) example.

• In step 3.2, set FPGA data capture buffer size to 32768 and FPGA data capture maximum
sequence depth to 2. Select Include capture condition logic in FPGA Data Capture to insert
the capture control logic into the generated FPGA data capture component, as this figure shows.

 Verify OFDM Transmit and Receive using FPGA Data Capture

8-51

• Run step 4.1 and follow the steps in the Generate Software Interface Model and Block Library
section of the “OFDM Transmit and Receive Using Analog Devices AD9361/AD9364”
(Communications Toolbox Support Package for Xilinx Zynq-Based Radio) example to generate a
software interface model.

• To generate and download the bitstream onto the board, follow the Generate and Load Bitstream
section of the “OFDM Transmit and Receive Using Analog Devices AD9361/AD9364”
(Communications Toolbox Support Package for Xilinx Zynq-Based Radio) example.

Alternatively, run the hOFDMTxRxRunHDLWATasks helper function to run the tasks from step 1.1 to
step 4.3. The function is attached to the example as a supporting file.

hOFDMTxRxRunHDLWATasks

Capture and Analyze Data from IP Core

Capture the test points of the generated IP core and map them to FPGA data capture. To run the
software interface model while the FPGA data capture waits for a trigger, launch the FPGA Data
Capture tool in nonblocking mode.

cd(fullfile('hdl_prj','hdlsrc', ...
 'zynqRadioHWSWOFDMAD9361AD9364SLVerify','fpga_data_capture'));
fdc = FPGADataCapture;
fdc.CaptureMode = 'nonBlocking';
fdc.launchApp;

Open the OFDM software interface model. Run the model in Monitor & Tune mode to control the
configuration from the Simulink model.

8 HDL Verifier Support Package for Xilinx FPGA Boards Examples

8-52

open_system('zynqRadioHWSWOFDMAD9361AD9364SL_interface');

Capture Data Constellation Points

Use the frequency-domain, channel-equalized, and common-phase-error (CPE) corrected data
subcarriers from the Channel and CPE Estimation and Correction subsystem to plot the data
constellation diagram. To capture only valid data constellation points, select Enable capture
condition logic on the Capture Condition tab of the FPGA Data Capture tool and add
tp_dataValid_1 as a signal with value High, as this figure shows. Click Capture Data.

After data capture is complete, plot the constellation diagram using the data that the board captures.

When enableInternaLoopback in the software interface model is false, the radio hardware
transmits and receives the OFDM signals through the Tx and Rx antennas, respectively. The channel
impairments modify the signal as it travels over the air in real time. In this scenario, use the
constellation plot to analyze the received signal quality. You can also modify modType in the software
interface model and verify the data constellation diagram appears as you expect.

hOFDMTxRxPlotDataConstellationFDC

 Verify OFDM Transmit and Receive using FPGA Data Capture

8-53

Capture Header Constellation Points for Failed CRC

When the signal-to-noise ratio (SNR) of the channel is low, the valid header data after channel
equalization and CPE correction often has CRC failures. You can emulate these conditions using the
software interface model.

In the software interface model, set enableInternalLoopback to true and snrdB to 3. Use these
trigger settings to capture the I/Q data of two header frames when the CRC fails.

8 HDL Verifier Support Package for Xilinx FPGA Boards Examples

8-54

Click Capture Data. If you have a DSP System Toolbox™ license, the Logic Analyzer app plots the
captured data as multiple signal waveforms. The signal tp_nSyncedFrames in the captured data
indicates the number of the frame with a failed CRC.

 Verify OFDM Transmit and Receive using FPGA Data Capture

8-55

Validate Functionality of Sync Signal Search Subsystem

The Sync Signal Search subsystem implements the SS correlation. The subsystem performs SS
detection by continuously cross-correlating the received signal with the SS signal in the time domain.
In addition, the subsystem computes the energy of the signal in the span of the correlator at each
time step and then scales the value to generate a threshold value. The Max Peak Searcher
subsystem searches for the maximum correlation peak in each OFDM frame duration. In the Sync
Signal Search subsystem, the SearchHold signal disables maximum peak search until it
estimates the carrier frequency offset. The SSPeakSearchDone signal goes high after the completion
of peak search in each OFDM frame duration. For an FFT Length of 128, the frame duration is 5760
samples. The position of the maximum peak from the start of the frame duration gives the timing
offset. You can capture valid samples of correlation in each OFDM frame duration to visualize the
correlation data and record the timing offset.

On the Trigger tab, add tp_searchHold_1 as a signal with the value High in Trigger Stage 1. To
capture correlation data for each frame duration, add tp_SSPeakSearchDone_1 as a signal with the
value High in Trigger Stage 2 and set Trigger position to 5759. These settings ensure that the tool
captures 5760 valid correlation samples before the signals satisfy these triggers. Samples 5761 to
11520 correspond to correlation of the next OFDM frame duration, and so on.

8 HDL Verifier Support Package for Xilinx FPGA Boards Examples

8-56

Select Enable capture condition logic on the Capture Condition tab to capture valid correlation
data in each frame duration. Add the tp_correlationValid_1 as a signal with the value High, as
this figure shows.

Click Capture Data. The Logic Analyzer displays the captured data as multiple signal waveforms.

Run the hOFDMTxRxPlotSSCorrelation helper function to visualize the peak by plotting the
captured correlation and threshold values. The index of the peak in each frame relative to start of the
frame duration gives the timing offset.

 hOFDMTxRxPlotSSCorrelation

 Verify OFDM Transmit and Receive using FPGA Data Capture

8-57

Conclusion

This example shows how to map the internal signals of an IP core to FPGA data capture and then
visualize the signals after you deploy the design to an FPGA. You use the trigger and capture control
configuration of the FPGA Data Capture tool for capturing the signals of interest. You can use this
approach to analyze and debug your own HDL IP core.

See Also
FPGA Data Capture | hdlverifier.FPGADataReader

Related Examples
• “OFDM Transmit and Receive Using Analog Devices AD9361/AD9364” (Communications Toolbox

Support Package for Xilinx Zynq-Based Radio)

More About
• “Data Capture Workflow” on page 6-2
• “Troubleshooting”

8 HDL Verifier Support Package for Xilinx FPGA Boards Examples

8-58

	HDL Verifier Support for Xilinx FPGA Boards
	Xilinx FPGA Board Support from HDL Verifier
	Supported Xilinx FPGA Boards

	Supported EDA Tools and Hardware
	Software
	Board Connections

	Download HDL Verifier FPGA Board Support Packages
	HDL Verifier Support Package for Xilinx FPGA Boards
	Install with Connection to Internet
	Install Support Package Offline

	Customize Xilinx FPGA Board
	Install Digilent Adept 2 Runtime
	Download Digilent Adept 2 Runtime Installer
	Install Digilent Adept 2 Runtime

	Setup and Configuration
	Guided Hardware Setup
	Select Board and Interface
	Setup Checklist
	Setup Steps
	Configure NIC on Host Computer
	Select a Drive and Load Firmware
	Install PCI Express Driver
	Set Jumper Switches
	Connect Hardware
	Verify Setup
	Open Examples

	Configure Network Interface Card (NIC) on Development Computer
	Windows
	Linux

	Hardware Setup

	AXI Manager
	Set Up AXI Manager
	Integrate AXI Manager IP in FPGA Design
	JTAG Considerations

	Use Simulink to Access FPGA Locations
	PCI Express AXI Manager
	PCIe AXI Manager IP
	PCI Express Core

	Ethernet AXI Manager
	Ethernet MAC Hub IP
	UDP AXI Manager IP

	Ethernet AXI Manager for Xilinx Zynq SoC Devices
	Step 1. Complete Hardware Checklist
	Step 2. Configure Host Computer
	Step 3. Copy Image to SD Card in Host System
	Step 4. Update SD Card Image in SoC Device (Optional)
	Step 5: Load Bitstream File to SoC Device (Optional)

	JTAG AXI Manager
	AXI Manager IP

	AXI Manager Simulation
	AXI Manager Simulation
	HDL Wrapper Creation
	SystemVerilog Test Bench
	writememory(addr,wdata,burst_type) SystemVerilog Task
	readmemory(addr,length,burst_type) SystemVerilog Task
	Memory Mapping Guidelines

	AXI Manager Reference
	aximanager
	readmemory
	release
	writememory
	setupAXIManagerForVivado
	loadImageToTargetSDCardPath
	copyImageToHostSDCardPath
	loadBitstream

	FPGA Data Capture
	Data Capture Workflow
	Generate and Integrate Data Capture IP Using HDL Workflow Advisor
	Configure and Generate IP Core for an Existing HDL Design
	Integrate IP into FPGA
	Capture Data

	Triggers
	What Is a Trigger Condition?
	Sequential Trigger
	Configure a Trigger Condition
	Trigger Position

	Design Considerations for Data Capture
	Signals to Capture
	Capture Timing
	JTAG Considerations
	Ethernet Considerations

	Capture Conditions
	What Is Capture Condition?
	Configure Capture Condition
	Differences Between Triggers and Capture Conditions

	Data Capture Reference
	FPGA Data Capture Component Generator
	generateFPGADataCaptureIP
	FPGA Data Capture
	hdlverifier.FPGADataReader
	clone
	displayDataTypes
	displayTriggerCondition
	isLocked
	launchApp
	release
	setDataType
	setTriggerComparisonOperator
	setTriggerCombinationOperator
	setTriggerCondition
	step
	setNumberofTriggerStages
	setTriggerTimeOut
	setRunImmediateFlag
	displayCaptureCondition
	setCaptureCondition
	setCaptureConditionCombinationOperator
	setCaptureConditionComparisonOperator
	checkStatus
	collectData
	stop
	FPGA Data Reader

	HDL Verifier Support Package for Xilinx FPGA Boards Examples
	Capture Temperature Sensor Data from Xilinx FPGA Board Using FPGA Data Capture
	Access FPGA Memory Using JTAG-Based AXI Manager
	Perform Large Matrix Multiplication on FPGA External DDR Memory Using Ethernet-Based AXI Manager
	Access FPGA Memory Using Ethernet-Based AXI Manager
	Access FPGA External Memory Using AXI Manager over PCI Express
	Leverage Built-In Ethernet on Zynq to Perform Memory Access Using AXI Manager
	Access DUT Registers on Xilinx Pure FPGA Board Using IP Core Generation Workflow
	Verify OFDM Transmit and Receive using FPGA Data Capture

